若全集U={-1,-2,-3,-4},M={-2,-3},則∁UM(  )
A、{-1,-2,-3}
B、{-2}
C、{-4}
D、{-1,-4}
考點:補集及其運算
專題:集合
分析:根據(jù)題意和補集的定義直接求出∁UM即可.
解答: 解:因為全集U={-1,-2,-3,-4},M={-2,-3},
所以∁UM={-1,-4},
故選:D.
點評:本題考查補集的運算,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

ab>0是a>0,b>0的
 
條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

銳角△ABC中,內(nèi)角A,B,C所對邊分別為a,b,c,且tanA=
3
bc
b2+c2-a2

(Ⅰ)求角A的大;
(Ⅱ)若a=
3
,求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|3≤x<7},B={x|4<x<10}
(1)求:A∩B,A∪B;
(2)求:(∁RA)∩(∁RB).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={(x,y)|3x-5y=-2},B={(x,y)|2x+7y=40},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)集合M={x|x2-mx+6=0,x∈R}且M∪{2,3}={2,3},則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,平面四邊形ABCD中,AB=AD=CD=1,BD=
2
,
BD⊥CD,將其沿對角線BD折成四面體A-BCD,使平面ABD⊥平面BCD,則下列說法中不正確的是( 。
A、平面ACD⊥平面ABD
B、AB⊥CD
C、平面ABC⊥平面ACD
D、AB∥平面ABC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)=|xex|,若關(guān)于x的方程(1-t)f2(x)-f(x)+t=0有四個不同的實數(shù)根,則實數(shù)t的取值范圍為( 。
A、(-∞,0)
B、(0,
1
e+1
C、(
e
e2+1
,1)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知不等式x2-2x-3<0的解集為A,不等式|x+1|<3的解集為B,不等式x2+ax+b<0的解集為A∩B,那么a+b=
 

查看答案和解析>>

同步練習冊答案