一家商場(chǎng)為了確定營銷策略,進(jìn)行了投入促銷費(fèi)用x和商場(chǎng)實(shí)際銷售額y的試驗(yàn),得到如下四組數(shù)據(jù).

投入促銷費(fèi)用x(萬元)
2
3
5
6
商場(chǎng)實(shí)際營銷額y(萬元)
100
200
300
400
(1)在下面的直角坐標(biāo)系中,畫出上述數(shù)據(jù)的散點(diǎn)圖,并據(jù)此判斷兩個(gè)變量是否具有較好的線性相關(guān)性;

(2)求出x,y之間的回歸直線方程x+
(3)若該商場(chǎng)計(jì)劃營銷額不低于600萬元,則至少要投入多少萬元的促銷費(fèi)用?

(1)

(2)=70x-30.(3)9萬元

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在某批次的某種燈泡中,隨機(jī)地抽取個(gè)樣品,并對(duì)其壽命進(jìn)行追蹤調(diào)查,將結(jié)果列成頻率分布表如下.根據(jù)壽命將燈泡分成優(yōu)等品、正品和次品三個(gè)等級(jí),其中壽命大于或等于天的燈泡是優(yōu)等品,壽命小于天的燈泡是次品,其余的燈泡是正品.

壽命(天)
頻數(shù)
頻率















合計(jì)


(1)根據(jù)頻率分布表中的數(shù)據(jù),寫出的值;
(2)某人從燈泡樣品中隨機(jī)地購買了個(gè),如果這個(gè)燈泡的等級(jí)情況恰好與按三個(gè)等級(jí)分層抽樣所得的結(jié)果相同,求的最小值;
(3)某人從這個(gè)批次的燈泡中隨機(jī)地購買了個(gè)進(jìn)行使用,若以上述頻率作為概率,用表示此人所購買的燈泡中次品的個(gè)數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

今年年初,我國多個(gè)地區(qū)發(fā)生了持續(xù)性大規(guī)模的霧霾天氣,給我們的身體健康產(chǎn)生了巨大的威脅。私家車的尾氣排放也是造成霧霾天氣的重要因素之一,因此在生活中我們應(yīng)該提倡低碳生活,少開私家車,盡量選擇綠色出行方式,為預(yù)防霧霾出一份力。為此,很多城市實(shí)施了機(jī)動(dòng)車車尾號(hào)限行,我市某報(bào)社為了解市區(qū)公眾對(duì)“車輛限行”的態(tài)度,隨機(jī)抽查了50人,將調(diào)查情況進(jìn)行整理后制成下表:

年齡(歲)
[15,25)
[25,35)
[35,45)
[45,55)
[55,65)
[65,75]
頻數(shù)
5
10
15
10
5
5
贊成人數(shù)
4
6
9
6
3
4
(1)完成被調(diào)查人員的頻率分布直方圖;
(2)若從年齡在[15,25),[25,35)的被調(diào)查者中各隨機(jī)選取兩人進(jìn)行進(jìn)行追蹤調(diào)查,記選中的4人中不贊成“車輛限行”的人數(shù)為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某車間將10名技工平均分成甲、乙兩組加工某種零件,在單位時(shí)間內(nèi)每個(gè)技工加工的合格零件數(shù)如下表:

 
1號(hào)
2號(hào)
3號(hào)
4號(hào)
5號(hào)
甲組
4
5
x
9
10
乙組
5
6
7
y
9
(1)已知兩組技工在單位時(shí)間內(nèi)加工的合格零件平均數(shù)為7,分別求出甲、乙兩組技工在單位時(shí)間內(nèi)加工的合格零件的方差,并由此分析兩組技工的加工水平;
(2)質(zhì)檢部門從該車間甲、乙兩組中各隨機(jī)抽取一名技工,對(duì)其加工的零件進(jìn)行檢測(cè),若2人加工的合格零件個(gè)數(shù)之和超過14,則稱該車間“質(zhì)量合格”,求該車間“質(zhì)量合格”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在某次測(cè)驗(yàn)中,有6位同學(xué)的平均成績?yōu)?5分.用表示編號(hào)為)的同學(xué)所得成績,且前5位同學(xué)的成績?nèi)缦拢?0,76,72,70,72
(1)求第6位同學(xué)的成績,及這6位同學(xué)成績的標(biāo)準(zhǔn)差;
(2)從前5位同學(xué)中,隨機(jī)地選2位同學(xué),求恰有1位同學(xué)成績?cè)趨^(qū)間(68,75)中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了比較兩種治療失眠癥的藥(分別稱為A藥,B藥)的療效,隨機(jī)地選取20位患者服用A藥,20位患者服用B藥,這40位患者在服用一段時(shí)間后,記錄他們?nèi)掌骄黾拥乃邥r(shí)間(單位:h),試驗(yàn)的觀測(cè)結(jié)果如下:
服用A藥的20位患者日平均增加的睡眠時(shí)間:
0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5
2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4
服用B藥的20位患者日平均增加的睡眠時(shí)間:
3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4
1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5
(1)分別計(jì)算兩組數(shù)據(jù)的平均數(shù),從計(jì)算結(jié)果看,哪種藥的療效更好?
(2)根據(jù)兩組數(shù)據(jù)完成下面莖葉圖,從莖葉圖看,哪種藥的療效更好?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為考查某種藥物預(yù)防疾病的效果,進(jìn)行動(dòng)物試驗(yàn),得到如下丟失數(shù)據(jù)的列聯(lián)表:

 
患病
未患病
總計(jì)
沒服用藥
20
30
50
服用藥


50
總計(jì)


100
設(shè)從沒服用藥的動(dòng)物中任取兩只,未患病數(shù)為;從服用藥物的動(dòng)物中任取兩只,未患病數(shù)為,工作人員曾計(jì)算過.
(1)求出列聯(lián)表中數(shù)據(jù)的值; 
(2)能夠以99%的把握認(rèn)為藥物有效嗎?參考公式:,其中;
①當(dāng)K2≥3.841時(shí)有95%的把握認(rèn)為、有關(guān)聯(lián);
②當(dāng)K2≥6.635時(shí)有99%的把握認(rèn)為、有關(guān)聯(lián).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某社團(tuán)組織20名志愿者利用周末和節(jié)假日參加社會(huì)公益活動(dòng),志愿者中,年齡在20至40歲的有12人,年齡大于40歲的有8人.
(1)在志愿者中用分層抽樣方法隨機(jī)抽取5名,年齡大于40歲的應(yīng)該抽取幾名?
(2)上述抽取的5名志愿者中任取2名,求取出的2人中恰有1人年齡大于40歲的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2013年12月21日上午10時(shí),省會(huì)首次啟動(dòng)重污染天氣Ⅱ級(jí)應(yīng)急響應(yīng),正式實(shí)施機(jī)車尾號(hào)限行,當(dāng)天某報(bào)社為了解公眾對(duì)“車輛限行”的態(tài)度,隨機(jī)抽查了50人,將調(diào)查情況進(jìn)行整理后制成下表:

(1)完成被調(diào)查人員的頻率分布直方圖;
(2)若從年齡在,的被調(diào)查者中各隨機(jī)選取兩人進(jìn)行追蹤調(diào)查,記選中的4人中不贊成“車輛限行”的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案