2013年12月21日上午10時,省會首次啟動重污染天氣Ⅱ級應(yīng)急響應(yīng),正式實施機車尾號限行,當(dāng)天某報社為了解公眾對“車輛限行”的態(tài)度,隨機抽查了50人,將調(diào)查情況進行整理后制成下表:

(1)完成被調(diào)查人員的頻率分布直方圖;
(2)若從年齡在的被調(diào)查者中各隨機選取兩人進行追蹤調(diào)查,記選中的4人中不贊成“車輛限行”的人數(shù)為,求隨機變量的分布列和數(shù)學(xué)期望.

(1)頻率分布直方圖詳見解析;(2)分布列詳見解析,.

解析試題分析:本題主要考查頻率分布直方圖和隨機變量的分布列和數(shù)學(xué)期望等基礎(chǔ)知識,考查學(xué)生分析問題解決問題的能力、畫圖的能力和計算能力.第一問,利用“”計算每一組的頻率,再利用“”計算每一組的縱坐標(biāo),從而畫出頻率分布直方圖;第二問,先通過對題意的分析,得出隨機變量的所有可能取值,再對每一種情況求概率,列出分布列,利用求數(shù)學(xué)期望.
試題解析:(Ⅰ)各組的頻率分別是     2分
所以圖中各組的縱坐標(biāo)分別是     4分
     5分
(Ⅱ)的所有可能取值為:0,1,2,3         6分



     10分
所以的分布列是:











                                                                   11分
所以的數(shù)學(xué)期望       12分
考點:1.頻率分布直方圖;2.隨機變量的分布列和數(shù)學(xué)期望.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

一家商場為了確定營銷策略,進行了投入促銷費用x和商場實際銷售額y的試驗,得到如下四組數(shù)據(jù).

投入促銷費用x(萬元)
2
3
5
6
商場實際營銷額y(萬元)
100
200
300
400
(1)在下面的直角坐標(biāo)系中,畫出上述數(shù)據(jù)的散點圖,并據(jù)此判斷兩個變量是否具有較好的線性相關(guān)性;

(2)求出x,y之間的回歸直線方程x+;
(3)若該商場計劃營銷額不低于600萬元,則至少要投入多少萬元的促銷費用?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

從某年級學(xué)生中,隨機抽取50人,其體重(單位:千克)的頻數(shù)分布表如下:

分組(體重)
 



頻數(shù)(人)
 
 
 
 
 
(1)根據(jù)頻數(shù)分布表計算體重在的頻率;
(2)用分層抽樣的方法從這50人中抽取10人,其中體重在中共有幾人?
(3)在(2)中抽出的體重在的人中,任取2人,求體重在中各有1人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某園藝師用兩種不同的方法培育了一批珍貴樹苗,在樹苗3個月大的時候,隨機抽取甲、乙兩種方法培育的樹苗各10株,測量其高度,得到的莖葉圖如圖所示(單位:cm).

(Ⅰ)依莖葉圖判斷用哪種方法培育的樹苗的平均高度大?
(Ⅱ)現(xiàn)從用兩種方法培育的高度不低于80cm的樹苗中隨機抽取兩株,求至少有一株是甲方法培育的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)鄭州市為了緩解交通壓力,大力發(fā)展公共交通,提倡多坐公交少開車.為了調(diào)查市民乘公交車的候車情況,交通主管部門從在某站臺等車的45名候車乘客中隨機抽取15人,按照他們的候車時間(單位:分鐘)作為樣本分成6組,如下表所示:

(1)估計這45名乘客中候車時間少于12分鐘的人數(shù);
(2)若從上表第四、五組的5人中隨機抽取2人做進一步的問卷調(diào)查,求抽到的2人恰好來自不同組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

空氣質(zhì)量指數(shù)(單位:)表示每立方米空氣中可入肺顆粒物的含量,這個值越高,代表空氣污染越嚴重.的濃度與空氣質(zhì)量類別的關(guān)系如下表所示:

日均濃度






空氣質(zhì)量類別
優(yōu)

輕度污染
中度污染
重度污染
嚴重污染
從甲城市月份的天中隨機抽取天的日均濃度指數(shù)數(shù)據(jù)莖葉圖如圖5所示.

(1)試估計甲城市在月份的天的空氣質(zhì)量類別為優(yōu)或良的天數(shù);
(2)在甲城市這個監(jiān)測數(shù)據(jù)中任取個,設(shè)為空氣質(zhì)量類別為優(yōu)或良的天數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某中學(xué)對高三年級進行身高統(tǒng)計,測量隨機抽取的20名學(xué)生的身高,其頻率分布直方圖如下(單位:cm)

(1)根據(jù)頻率分布直方圖,求出這20名學(xué)生身高中位數(shù)的估計值和平均數(shù)的估計值.
(2)在身高為140—160的學(xué)生中任選2個,求至少有一人的身高在150—160之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某中學(xué)對高三年級進行身高統(tǒng)計,測量隨機抽取的20名學(xué)生的身高,其頻率分布直方圖如下(單位:cm)

(1)根據(jù)頻率分布直方圖,求出這20名學(xué)生身高中位數(shù)的估計值和平均數(shù)的估計值;
(2)在身高為140—160的學(xué)生中任選2個,求至少有一人的身高在150—160之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某高校在2011年自主招生考試成績中隨機抽取100名學(xué)生的筆試成績,按成績分組:第1組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),第5組[95,100]得到的頻率分布直方圖如圖所示.

(1)分別求第3,4,5組的頻率;
(2)若該校決定在筆試成績高的第3,4,5組中用分層抽樣抽取6名學(xué)生進入第二輪面試.
① 已知學(xué)生甲和學(xué)生乙的成績均在第三組,求學(xué)生甲和學(xué)生乙同時進入第二輪面試的概率;
② 學(xué)校決定在這6名學(xué)生中隨機抽取2名學(xué)生接受考官的面試,設(shè)第4組中有X名學(xué)生被考官面試,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案