一個半徑為1球內(nèi)切于一個正方體,切點(diǎn)為A,B,C,D,E,F(xiàn),那么多面體ABCDEF的體積為( 。
A、
1
12
B、
1
6
C、
2
3
D、
4
3
考點(diǎn):棱柱、棱錐、棱臺的體積
專題:空間位置關(guān)系與距離
分析:由題意知這個正方體的棱長為2,切點(diǎn)為A,B,C,D,E,F(xiàn)構(gòu)成一個正八面體,沿AD、BE、CF切開這個正八面體,切開該圖形后的四面體B-AOF為八面體的
1
8
,由此能求出多面體ABCDEF的體積.
解答: 解:∵一個半徑為1球內(nèi)切于一個正方體,
∴這個正方體的棱長為2,
切點(diǎn)為A,B,C,D,E,F(xiàn)構(gòu)成一個正八面體,如圖,
沿AD、BE、CF切開這個正八面體,
設(shè)AD、BE、CF交于點(diǎn)O,
則OA=OB=OC=OD=OE=OF=1,
切開該圖形后的四面體B-AOF為八面體的
1
8
,
S△AOF=
1
2
×1×1=
1
2

VB-AOF=
1
3
×
1
2
×1
=
1
6
,
∴多面體ABCDEF的體積V=8VB-AOF=8×
1
6
=
4
3

故選:D.
點(diǎn)評:本題考查多面體的求法,是中檔題,解題時要認(rèn)真審題,注意數(shù)形結(jié)合思想的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
=(cosα,sinα),
b
=(cosα,1-
5
4sinα
),若
a
b
,則銳角α為( 。
A、15°B、30°
C、45°D、60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義運(yùn)算a?b=
a,a≥b
b,a<b
,則函數(shù)y=1?lnx圖象可能為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

類比下列平面內(nèi)的結(jié)論,在空間中仍能成立的是( 。
①平行于同一直線的兩條直線平行;
②垂直于同一直線的兩條直線平行;
③如果一條直線與兩條平行線中的一條垂直,則必與另一條垂直;
④如果一條直線與兩條平行線中的一條相交,則必與另一條相交.
A、①②④B、①③
C、②④D、①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題p:命題“?x∈R,x2+x+1=0”的否定是“?x∈R,x2+x+1≠0”;命題q:“x>2”是“|x-1|>1”的充分不必要條件,則( 。
A、“p或q”為真
B、“p且q”為真
C、p真q假
D、p,q均為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

e1
、
e2
是夾角為60°的兩個單位向量,則向量
a
=2
e1
+
e2
與向量
b
=-3
e1
+2
e2
的夾角為( 。
A、120°B、90°
C、60°D、30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線
x2
a2
-
y2
b2
=1的一個焦點(diǎn)到一條漸近線的距離為2a,則雙曲線的離心率為( 。
A、2
B、
2
C、
3
D、
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=(x-1)(x-2)(x-3)(x-4),則f′(2)=( 。
A、-1B、0C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},a1=1,點(diǎn)P(an,2an+1)(n∈N*)在直線x-
1
2
y+1=0上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=2nan,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊答案