在△ABC中,已知a=4,c=5,且S△ABC=6,求b.
考點(diǎn):余弦定理,正弦定理
專題:解三角形
分析:利用三角形面積公式列出關(guān)系式,將a,c,以及已知面積代入求出sinB的值,進(jìn)而求出cosB的值,利用余弦定理即可求出b的值.
解答: 解:∵在△ABC中,已知a=4,c=5,且S△ABC=6,
∴S△ABC=
1
2
acsinB=
1
2
×4×5×sinB=6,即sinB=
3
5

∴cosB=±
1-sin2B
4
5
,
當(dāng)cosB=
4
5
時(shí),由余弦定理得:b2=a2+c2-2accosB=16+25-32=9,即b=3;
當(dāng)cosB=-
4
5
時(shí),由余弦定理得:b2=a2+c2-2accosB=16+25+32=73,即b=
73
點(diǎn)評(píng):此題考查了余弦定理,以及三角形的面積公式,熟練掌握余弦定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
=(x,lnx+k),
n
=(1,f(x)),
m
n
,k為常數(shù),曲線y=f(x)在點(diǎn)(1,f(1))處的切線與y軸垂直.
(1)若函數(shù)f(x)在區(qū)間(s,s+
1
2
)(s>0)上存在極值,求實(shí)數(shù)s的取值范圍;
(2)對(duì)?x∈[1,+∞),不等式f(x)>
t
x+1
恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
6
3
,焦距是函數(shù)f(x)=x2-8的零點(diǎn).
(1)求橢圓的方程;
(2)若直線y=kx+2(k≠0)與橢圓交于C、D兩點(diǎn),|CD|=
6
2
5
,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ln(
1
2
+
1
2
ax)+x2-ax,其中a為大于零的常數(shù).
(1)若x=
1
2
是函數(shù)f(x)的一個(gè)極值點(diǎn),求a的值;
(2)判斷函數(shù)f(x)在區(qū)間[
1
2
,+∞)上的單調(diào)性;
(3)若對(duì)任意的a∈(1,2),總存在x0∈[
1
2
,1],使不等式f(x0)≥m(1-a2)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}滿足a2=2,a6+a8=14
(1)求數(shù)列{an}的通項(xiàng)公式
(2)求數(shù)列{
an
2n
}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
x2+ax+1

(1)若a∈(-2,2),求f(x)的單調(diào)區(qū)間;
(2)求f(x)值域;
(3)若a>-2,求f(x)在區(qū)間[0,1]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是等比數(shù)列,且a2=6,a5=162.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)求數(shù)列{an}的前N項(xiàng)和為Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a和b是任意非零實(shí)數(shù).
(1)求證
|2a+b|+|2a-b|
|a|
≥4

(2)若不等式|a+b|+|a-b|≥|a(|2+x|+|2-x|)恒成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式(
1
3
 x2-3x<1的解集為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案