11.一慈善機(jī)構(gòu)為籌集善款決定組織一場(chǎng)咅樂(lè)會(huì).為籌備這場(chǎng)音樂(lè)會(huì),必須完成A,B,C,D,E,F(xiàn),G七項(xiàng)任務(wù),每項(xiàng)任務(wù)所需時(shí)間及其關(guān)系(例如:E任務(wù)必須在A任務(wù)完成后才能進(jìn)行)如表所示:
任務(wù)ABCDEFG
所需時(shí)間/周2143212
前期任務(wù)無(wú)要求無(wú)要求無(wú)要求A,B,CAA,B,C,D,EA,B,C,D,E
則完成這場(chǎng)音樂(lè)會(huì)的籌備工作需要的最短時(shí)間為(  )
A.8周B.9周C.10周D.12周

分析 根據(jù)各籌備任務(wù)的先后順序做出統(tǒng)籌安排,盡量將多項(xiàng)工作同時(shí)展開(kāi)以節(jié)約時(shí)間.

解答 解:第一周任務(wù)ABC,第二周任務(wù)AC,第三周任務(wù)CE,第四周任務(wù)CE,
第五周到第七周任務(wù)D,第八周任務(wù)FG,第九周任務(wù)G.
故最短需要9周完成籌備任務(wù).
故選B.

點(diǎn)評(píng) 本題考查了統(tǒng)籌思想的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)a,b∈R,若矩陣A=$(\begin{array}{l}{1}&{a}\\&{0}\end{array})$的變換把直線l:x+y-1=0變換為另一直線l′:x+2y+l=0.
(1)求a,b的值.
(2)求矩陣A的特征值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=lnx+1.
(Ⅰ)證明:當(dāng)x>0時(shí),f(x)≤x;
(Ⅱ)設(shè)$g(x)=ax+({a-1})•\frac{1}{x}-lnx-1$,若g(x)≥0對(duì)x>0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{{e}^{x}}{a{x}^{2}+bx+c}$.其中a,b,c∈R.
(1)若a=1,b=1,c=1,求f(x)的單調(diào)區(qū)間;
(2)若b=c=1,且當(dāng)x≥0時(shí),f(x)≥1總成立,求實(shí)數(shù)a的取值范圍;
(3)若a>0,b=0,c=1,若f(x)存在兩個(gè)極值點(diǎn)x1,x2,求證:e$\sqrt{\frac{1}{a}}$<f(x1)+f(x2)<$\frac{{e}^{2}+1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.小明在研究三棱錐的時(shí)候,發(fā)現(xiàn)下面一個(gè)真命題,在三棱錐A-BCD中,已知∠BAC=α,∠CAD=β,∠DAB=γ(如圖),設(shè)二面角B-AC-D的大小為θ,則cosθ=$\frac{f(λ)-cosαcosβ}{sinαsinβ}$,其中f(γ)是一個(gè)與γ有關(guān)的代數(shù)式,請(qǐng)寫(xiě)出符合條件的f(γ)=cosγ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知平行四邊形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow$,用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{AC}$=$\overrightarrow{a}$+$\overrightarrow$;$\overrightarrow{DB}$=$\overrightarrow{a}$-$\overrightarrow$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{2x-a}{{x}^{2}+3}$在區(qū)間[-1,1]上是增函數(shù).
(1)求實(shí)數(shù)a的取值范圍的組成集合A.
(2)關(guān)于x的方程f(x)=$\frac{1}{x}$的兩個(gè)非零實(shí)根為x1,x2.試問(wèn)是否存在實(shí)數(shù)m,使得不等式m2+tm+2≥|x1-x2|對(duì)任意a∈A及t∈[-1,1]恒成立,若存在,求m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.設(shè)f(x)是定義在正整數(shù)集上的函數(shù),且f(x)滿足:“當(dāng)f(k)≥k2成立時(shí),總可推出f(k+1)≥(k+1)2成立”.那么,下列四個(gè)命題中,正確的是②③④.(填寫(xiě)命題序號(hào))
①若f(2)<4成立,則f(10)<100;②若f(3)>9成立,則當(dāng)k≥4時(shí),均有f(k)>k2成立;③若f(4)≥25成立,則當(dāng)k≥4時(shí),均有f(k)≥k2成立;④若f(5)<25成立,則f(1)≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.若集合A=(-2,4),B=(-∞,m)∪[m+8,+∞).
(1)若m=3,全集U=A∪B,試求A∩(∁UB);
(2)若A∩B=∅,求負(fù)實(shí)數(shù)m的取值范圍;
(3)若A∩B=A,求正實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案