設(shè)m∈R,A={(x,y)|y=-
3
x+m},B={(x,y)|x=cosθ,y=sinθ,0<θ<2π},且A∩B={(cosθ1,sinθ1),(cosθ2,sinθ2)}(θ1≠θ2),求m的取值范圍.
分析:集合A、B都是點(diǎn)集,集合A是直線上的點(diǎn),集合B是除了一點(diǎn)(1,0)的單位圓上的所有點(diǎn),A∩B={(cosθ1,sinθ1),(cosθ2,sinθ2)}(θ1≠θ2),說(shuō)明直線y=-
3
x+m與圓x2+y2=1(x≠1)交于兩點(diǎn),即圓心到直線的距離小于半徑,且直線不過(guò)點(diǎn)(1,0),列出不等式,解可得答案.
解答:解:根據(jù)題意,直線y=-
3
x+m與圓x2+y2=1(x≠1)交于兩點(diǎn),
|m|
12+(-
3
)
2
<1且0≠-
3
×1+m.
∴-2<m<2且m≠
3
,
所以m的取值范圍是-2<m<2且m≠
3
點(diǎn)評(píng):本題以集合為載體考查了直線圓的位置關(guān)系,屬于一道中檔題,題目比較有新意.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)m∈R,
a
=(cosx,sinx),
b
=(msinx,2cos(
π
2
-x))
f(x)=
a
•(
b
-
a
)
且f(-
π
3
)=f(0),
(Ⅰ)求m的值;
(Ⅱ)設(shè)△ABC三內(nèi)角A,B,C所對(duì)邊分別為a,b,c且
a2+c2-b2
a2+b2-c2
=
c
2a-c
,求f(x)在(0,B]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)m∈R,A={(x,y)|y=-數(shù)學(xué)公式x+m},B={(x,y)|x=cosθ,y=sinθ,0<θ<2π},且A∩B={(cosθ1,sinθ1),(cosθ2,sinθ2)}(θ1≠θ2),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)m∈R,A={(x,y)|y=-
3
x+m},B={(x,y)|x=cosθ,y=sinθ,0<θ<2π},且A∩B={(cosθ1,sinθ1),(cosθ2,sinθ2)}(θ1≠θ2),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2006年高考第一輪復(fù)習(xí)數(shù)學(xué):1.1 集合的概念與運(yùn)算(解析版) 題型:解答題

設(shè)m∈R,A={(x,y)|y=-x+m},B={(x,y)|x=cosθ,y=sinθ,0<θ<2π},且A∩B={(cosθ1,sinθ1),(cosθ2,sinθ2)}(θ1≠θ2),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案