【題目】已知的三個(gè)頂點(diǎn),,,其外接圓為.對(duì)于線段上的任意一點(diǎn),
若在以為圓心的圓上都存在不同的兩點(diǎn),使得點(diǎn)是線段的中點(diǎn),則的半徑的取值范圍__________.
【答案】
【解析】分析:求出直線的方程設(shè)出點(diǎn)P,N的坐標(biāo),結(jié)合題意得到點(diǎn)M的坐標(biāo),然后根據(jù)點(diǎn)都在半徑為的上得到關(guān)于的方程組,將方程組有解轉(zhuǎn)化為兩圓有公共點(diǎn)處理,進(jìn)而得到關(guān)于的不等式恒成立,利用函數(shù)的知識(shí)求得值域后可得故且,再利用線段與圓無公共點(diǎn),即直線與圓相離可得,于是可求得.
詳解:由題意得直線的方程為.
設(shè)點(diǎn),
∵點(diǎn)是線段的中點(diǎn),
∴點(diǎn)的坐標(biāo)為.
又都在半徑為的上,
∴,即
∵關(guān)于的方程組有解,即以為圓心為半徑的圓和以為圓心為半徑的圓有公共點(diǎn),
∴,
又
∴對(duì)任意的恒成立.
設(shè),則有,
故且.
又線段與圓無公共點(diǎn),
∴對(duì)任意的恒成立,
∴.
綜上可得,所以,
即的半徑的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正數(shù)數(shù)列{an}的前n項(xiàng)和為Sn,滿足 ,.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè),若是遞增數(shù)列,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在三角形ABC中,AB<AC,∠BAC=90°,邊AB,AC的長(zhǎng)分別為方程x2﹣2(1)x+40的兩個(gè)實(shí)數(shù)根,若斜邊BC上有異于端點(diǎn)的E,F兩點(diǎn),且EF=1,則的取值范圍為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在國(guó)慶期間,某商場(chǎng)進(jìn)行優(yōu)惠大酬賓活動(dòng),在活動(dòng)期間,商場(chǎng)內(nèi)所有商品按標(biāo)價(jià)的80%出售;同時(shí),當(dāng)顧客在該商場(chǎng)內(nèi)消費(fèi)滿一定金額(元)后,還可按如下方案獲得相應(yīng)金額(元)的獎(jiǎng)券:根據(jù)上述優(yōu)惠方案,顧客在該商場(chǎng)購(gòu)物可以獲得雙重優(yōu)惠例如,購(gòu)買標(biāo)價(jià)為300元的商品,則消費(fèi)金額為240元,獲得的優(yōu)惠額為:(元).設(shè)購(gòu)買商品得到的,試問:
(1)購(gòu)買一件標(biāo)價(jià)為800元的商品,顧客得到的優(yōu)惠率是多少?
(2)對(duì)于標(biāo)價(jià)在(元)內(nèi)的商品,要使顧客購(gòu)買某商品獲得30%的優(yōu)惠率,則該商品的標(biāo)價(jià)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,曲線C的極坐標(biāo)方程為.
(1)求曲線的普通方程和的直角坐標(biāo)方程;
(2)設(shè)分別交于點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第23屆冬季奧運(yùn)會(huì)于2018年2月9日至2月25日在韓國(guó)平昌舉行,期間正值我市學(xué)校放寒假,寒假結(jié)束后,某校工會(huì)對(duì)全校教職工在冬季奧運(yùn)會(huì)期間每天收看比賽轉(zhuǎn)播的時(shí)間作了一次調(diào)查,得到如下頻數(shù)分布表:
(1)若講每天收看比賽轉(zhuǎn)播時(shí)間不低于3小時(shí)的教職工定義為“體育達(dá)人”,否則定義為“非體育達(dá)人”,請(qǐng)根據(jù)頻數(shù)分布表補(bǔ)全列聯(lián)表:
并判斷能否有90%的把握認(rèn)為該校教職工是否為“體育達(dá)人”與“性別”有關(guān);
(2)在全!绑w育達(dá)人”中按性別分層抽樣抽取6名,再?gòu)倪@6名“體育達(dá)人”中選取2名作冬奧會(huì)知識(shí)講座.記其中女職工的人數(shù)為,求的分布列與數(shù)學(xué)期望.
附表及公式:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)、分別是橢圓的左、右焦點(diǎn).若是該橢圓上的一個(gè)動(dòng)點(diǎn),的最大值為1.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為(與不重合),則直線與軸是否交于一個(gè)定點(diǎn)?若是,請(qǐng)寫出定點(diǎn)坐標(biāo),并證明你的結(jié)論;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),曲線的圖象在點(diǎn)處的切線方程為.
(1)求,并證明;
(2)若對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時(shí),求函數(shù)的單調(diào)遞增區(qū)間;
(2)對(duì)于,為任意實(shí)數(shù),關(guān)于的方程恰好有兩個(gè)不等實(shí)根,求實(shí)數(shù)的值;
(3)在(2)的條件下,若不等式在恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com