已知復(fù)數(shù)z=1-i(其中i為虛數(shù)單位),則
2i
z
等于( 。
A、1-iB、1+i
C、-1-iD、-1+i
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:把z=1-i代入
2i
z
,然后直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)求值.
解答: 解:∵z=1-i,
2i
z
=
2i
1-i
=
2i(1+i)
(1-i)(1+i)
=
2i(1+i)
2
=-1+i

故選:D.
點(diǎn)評(píng):本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,是基礎(chǔ)的計(jì)算題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
sinx
2-cosx
,則f′(0)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x+sinx,x∈R(  )
A、是奇函數(shù),但不是偶函數(shù)
B、是偶函數(shù),但不是奇函數(shù)
C、既是奇函數(shù),又是偶函數(shù)
D、既不是奇函數(shù),又不是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡(jiǎn):sin6α+cos6α+3sin2α•cos2α=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

cos(-2040°)=( 。
A、
1
2
B、-
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x=2k-1,k∈Z},B={x|-1≤x≤3},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-2|x|-3.
(1)作出函數(shù)f(x)的大致圖象,并根據(jù)圖象寫出函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)在[-2,4]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正三角形ABC中,
內(nèi)切圓半徑
外接圓半徑
=
OD
OA
=
OD
AD-OD
=
OD
AD
1-
OD
AD
,而
OD
AD
=
S△OBC
S△ABC
=
1
3
,所以
內(nèi)切圓半徑
外接圓半徑
=
1
2
.應(yīng)用類比推理,在正四面體ABCD(每個(gè)面都是正三角形的四面體)中,
內(nèi)切球的半徑r
外接球的半徑R
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-
1
2
ax2+x,a∈R.
(1)當(dāng)a=1時(shí),求在點(diǎn)(1,f(1))處的切線方程;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案