函數(shù)f(x)=
sinx
2-cosx
,則f′(0)的值為
 
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專(zhuān)題:導(dǎo)數(shù)的概念及應(yīng)用
分析:先根據(jù)導(dǎo)數(shù)的運(yùn)算法則求導(dǎo),再代入值計(jì)算即可.
解答: 解:∵f(x)=
sinx
2-cosx
,
∴f′(x)=
(sinx)′(2-cosx)-sinx(2-cosx)′
(2-cosx)2
=
cosx(2-cosx)-sinxsinx
(2-cosx)2
=
2cosx-1
(2-cosx)2
,
∴f′(0)=
1
1
=1,
故答案為:1.
點(diǎn)評(píng):本題考查了導(dǎo)數(shù)的運(yùn)算法則和函數(shù)值得求法,屬于基礎(chǔ)題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
-
1
2
x+
1
4
,x∈[0,
1
2
]
2x2
x+2
,x∈(
1
2
,1]
,g(x)=asin(
π
3
x+
2
)-2a+2(a>0),給出下列結(jié)論,其中所有正確的結(jié)論的序號(hào)是( 。
①直線x=3是函數(shù)g(x)的一條對(duì)稱(chēng)軸;         
②函數(shù)f(x)的值域?yàn)閇0,
2
3
];
③若存在x1,x2∈[0,1],使得f(x1)=g(x2),則實(shí)數(shù)a的取值范圍是[
4
9
,
4
5
];
④對(duì)任意a>0,方程f(x)=g(x)在[0,1]內(nèi)恒有解.
A、①②B、①②③
C、①③④D、①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=log2|2x-1|的圖象大致是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于函數(shù)f(x)=sin2x-(
2
3
|x|+
1
2
有如下四個(gè)結(jié)論:①f(x)的圖象關(guān)于y軸對(duì)稱(chēng);②f(x)的值域是(-
1
2
,
3
2
);③當(dāng)x∈(0,
π
2
)時(shí),f(x)為增函數(shù);④f(x)在R上有且只有一個(gè)零點(diǎn),則正確結(jié)論的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=2x-3+
x2-12
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
ln(x-a)
x

(Ⅰ)若a=-1,證明:函數(shù)f(x)是(0,+∞)上的減函數(shù);
(Ⅱ)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線x-y=0平行,求a的值;
(Ⅲ)若x>0,證明:
ln(x+1)
x
x
ex-1
(其中e=2.71828…是自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a=(
3
2
,1+sinα),b=(1-
2
2
,
1
3
),且a∥b,則銳角α為( 。
A、30°B、45°
C、60°D、75°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)M={平面內(nèi)的點(diǎn)(a,b)},N={f(x)|f(x)=acos2x+bsin2x},給出M到N的映射f:(a,b)→f(x)=acos2x+bsin2x,則點(diǎn)(1,
3
)的象f(x)的最小正周期為( 。
A、
π
2
B、
π
4
C、π
D、2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z=1-i(其中i為虛數(shù)單位),則
2i
z
等于( 。
A、1-iB、1+i
C、-1-iD、-1+i

查看答案和解析>>

同步練習(xí)冊(cè)答案