求過兩點(diǎn)P1(a,b),P2(c,d)的直線的斜率,畫出算法的程序框圖,并寫出相應(yīng)的程序語句。
解:程序框圖如圖所示:

程序如下所示:
。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若拋物線C:y2=2px(p>0)的焦點(diǎn)為F,過F且垂直于x軸的直線與拋物線交于兩點(diǎn)P1,P2,已知|P1P2|=8.
(1)過點(diǎn)M(3,0)且斜率為a的直線與曲線C相交于A、B兩點(diǎn),求△FAB的面積S(a)及其值域.
(2)設(shè)m>0,過點(diǎn)N(m,0)作直線與曲線C相交于A、B兩點(diǎn),若∠AFB恒為鈍角,試求出m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,橢圓的方程為
x2
a2
+
2y2
a2
=1(a>0)
,其右焦點(diǎn)為F,把橢圓的長軸分成6等分,過每個(gè)等分點(diǎn)作x軸的垂線交橢圓上半部于點(diǎn)P1,P2,P3,P4,P5五個(gè)點(diǎn),且|P1F|+|P2F|+|P3F|+|P4F|+|P5F|=5
2

(1)求橢圓的方程;
(2)設(shè)直線l過F點(diǎn)(l不垂直坐標(biāo)軸),且與橢圓交于A、B兩點(diǎn),線段AB的垂直平分線交x軸于點(diǎn)M(m,0),試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寧波二模)如圖,已知橢圓E:
x2
a2
+
y2
b2
=1 (a>b>0)
的離心率是
2
2
,P1、P2是橢圓E的長軸的兩個(gè)端點(diǎn)(P2位于P1右側(cè)),點(diǎn)F是橢圓E的右焦點(diǎn).點(diǎn)Q是x軸上位于P2右側(cè)的一點(diǎn),且滿足
1
|P1Q|
+
1
|P2Q|
=
2
|FQ|
=2

(Ⅰ) 求橢圓E的方程以及點(diǎn)Q的坐標(biāo);
(Ⅱ) 過點(diǎn)Q的動(dòng)直線l交橢圓E于A、B兩點(diǎn),連結(jié)AF并延長交橢圓于點(diǎn)C,連結(jié)BF并延長交橢圓于點(diǎn)D.
①求證:B、C關(guān)于x軸對(duì)稱;
②當(dāng)四邊形ABCD的面積取得最大值時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•長寧區(qū)二模)設(shè)拋物線C:y2=2px(p>0)的焦點(diǎn)為F,過F且垂直于x軸的直線與拋物線交于P1,P2兩點(diǎn),已知|P1P2|=8.
(1)求拋物線C的方程;
(2)過點(diǎn)M(3,0)作方向向量為
d
=(1,a)
的直線與曲線C相交于A,B兩點(diǎn),求△FAB的面積S(a)并求其值域;
(3)設(shè)m>0,過點(diǎn)M(m,0)作直線與曲線C相交于A,B兩點(diǎn),問是否存在實(shí)數(shù)m使∠AFB為鈍角?若存在,請(qǐng)求出m的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊答案