6.已知α,β$∈(\frac{3π}{4},π)$,$cos(α+β)=\frac{4}{5}$,$cos(β-\frac{π}{4})=-\frac{5}{13}$,則$sin(α+\frac{π}{4})$=$-\frac{33}{65}$.

分析 由已知可求角α+β,$β-\frac{π}{4}$的范圍,利用同角三角函數(shù)基本關(guān)系式可求sin(α+β),sin($β-\frac{π}{4}$),由$sin(α+\frac{π}{4})$=sin[(α+β)-($β-\frac{π}{4}$)]利用兩角差的正弦函數(shù)公式即可計(jì)算得解.

解答 解:∵α,β$∈(\frac{3π}{4},π)$,$cos(α+β)=\frac{4}{5}$,$cos(β-\frac{π}{4})=-\frac{5}{13}$,
∴α+β∈($\frac{3π}{2}$,2π),$β-\frac{π}{4}$=($\frac{π}{2}$,$\frac{3π}{4}$),
可得:sin(α+β)=-$\sqrt{1-co{s}^{2}(α+β)}$=-$\frac{3}{5}$,sin($β-\frac{π}{4}$)=$\sqrt{1-co{s}^{2}(β-\frac{π}{4})}$=$\frac{12}{13}$,
∴$sin(α+\frac{π}{4})$=sin[(α+β)-($β-\frac{π}{4}$)]=sin(α+β)cos($β-\frac{π}{4}$)-cos(α+β)sin($β-\frac{π}{4}$)=(-$\frac{3}{5}$)×(-$\frac{5}{13}$)-$\frac{4}{5}×$$\frac{12}{13}$=$-\frac{33}{65}$.
故答案為:$-\frac{33}{65}$.

點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)基本關(guān)系式,兩角差的正弦函數(shù)公式在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.把函數(shù)y=sin(6x+$\frac{π}{6}$)圖象上各點(diǎn)的橫坐標(biāo)擴(kuò)大到原來(lái)的3倍(縱坐標(biāo)不變),再將圖象向右平移$\frac{π}{3}$個(gè)單位,那么所得函數(shù)圖象的一條對(duì)稱軸方程為( 。
A.x=-$\frac{π}{2}$B.x=-$\frac{π}{4}$C.x=$\frac{π}{8}$D.x=$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=2x(x+2),若數(shù)列{an}滿足a1=$\frac{1}{2}$,且an+1=$\frac{1}{1-{a}_{n}}$,則f(a2016)=( 。
A.6B.-6C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.用數(shù)字0,1,2,3,4,5可以組成沒(méi)有重復(fù)數(shù)字,并且比20000大的五位奇數(shù)共有( 。
A.288個(gè)B.144個(gè)C.240個(gè)D.126個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知函數(shù)f(x)=ax-2,g(x)=loga|x|(其中a>0且a≠1),若f(5)•g(-3)>0,則f(x),g(x)在同一坐標(biāo)系內(nèi)的大致圖象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.將A,B,C共3本不同的書(shū)放到6個(gè)書(shū)柜里面,若每個(gè)書(shū)柜最多放2本,則不同的放法種數(shù)是( 。
A.210B.120C.90D.80

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.某公司設(shè)計(jì)如圖所示的環(huán)狀綠化景觀帶,該景觀帶的內(nèi)圈由兩條平行線段(圖中的AB,DC)和兩個(gè)半圓構(gòu)成,設(shè)AB=xm,且x≥80.
(1)若內(nèi)圈周長(zhǎng)為400m,則x取何值時(shí),矩形ABCD的面積最大?
(2)若景觀帶的內(nèi)圈所圍成區(qū)域的面積為$\frac{22500}{π}$m2,則x取何值時(shí),內(nèi)圈周長(zhǎng)最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)F是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的右焦點(diǎn),雙曲線兩漸近線分別為l1,l2,過(guò)點(diǎn)F作直線11的垂線,分別交l1l2于A,B兩點(diǎn),若A,B兩點(diǎn)均在x軸的上方且|0A|=3,|OB|=5,則雙曲線的離心率為$\sqrt{5}$或$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知條件p:函數(shù)f(x)=x2-ax+4有零點(diǎn);條件q:函數(shù)g(x)=2x2+ax+4在[3,+∞)上是增函數(shù).若條件p,q中有且只有一個(gè)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案