【題目】已知頂點在原點,焦點在x軸的負半軸的拋物線截直線y=x+所得的弦長|P1P2|=4,求此拋物線的方程.
【答案】y2=-2x.
【解析】試題分析:拋物線,聯(lián)立,得,由 ,根據(jù)韋達定理及弦長公式,列出關(guān)于的方程,解得的值,就能求出拋物線方程.
試題解析:設(shè)拋物線方程為y2=-2px(p>0),把直線方程與拋物線方程聯(lián)立得
消元得x2+(3+2p)x+=0,① 判別式Δ=(3+2p)2-9=4p2+12p>0,解得p>0或p<-3(舍),
設(shè)P1(x1,y1),P2(x2,y2),則①中由根與系數(shù)的關(guān)系得x1+x2=-(3+2p),x1·x2=,代入弦長公式得·=4,解得p=1或p=-4(舍),所以所求拋物線方程為y2=-2x.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】秦九韶是我國南宋時期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法.如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實例,若輸入n,x的值分別為3,2,則輸出v的值為( )
A.9
B.18
C.20
D.35
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ex+x﹣2,g(x)=lnx+x2﹣3,若實數(shù)a,b滿足f(a)=0,g(b)=0,則( )
A.0<g(a)<f(b)
B.f(b)<g(a)<0
C.f(b)<0<g(a)
D.g(a)<0<f(b)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E的方程: ,P為橢圓上的一點(點P在第三象限上),圓P 以點P為圓心,且過橢圓的左頂點M與點C(﹣2,0),直線MP交圓P與另一點N.
(1)求圓P的標準方程;
(2)若點A在橢圓E上,求使得 取得最小值的點A的坐標;
(3)若過橢圓的右頂點的直線l上存在點Q,使∠MQN為鈍角,求直線l斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)當a=﹣2時,求不等式f(x)<g(x)的解集;
(2)設(shè)a>﹣1,且當 時,f(x)≤g(x),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}的前n項和Sn=2n+1,
(1)求{an}的通項公式
(2)設(shè)bn=log2an+2 , 求 的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)若方程在上有根,求實數(shù)的取值范圍;
(2)設(shè),若對任意的,都有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物,我國PM2.5標準采用世界衛(wèi)生組織設(shè)定的最寬限值,PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級;在35微克/立方米~75微克/立方米之間空氣質(zhì)量為二級;在75微克/立方米及其以上空氣質(zhì)量為超標.
某試點城市環(huán)保局從該市市區(qū)2016年全年每天的PM2.5監(jiān)測數(shù)據(jù)中隨機抽取6天的數(shù)據(jù)作為樣本,監(jiān)測值莖葉圖(十位為莖,個位為葉)如圖所示,若從這6天的數(shù)據(jù)中隨機抽出2天,
(1)求恰有一天空氣質(zhì)量超標的概率;
(2)求至多有一天空氣質(zhì)量超標的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱柱ABCD﹣A1B1C1D1的側(cè)棱AA1⊥底面ABCD,ABCD是等腰梯形,AB∥DC,AB=2,AD=1,∠ABC=60°,E為A1C的中點
(1)求證:D1E∥平面BB1C1C;
(2)求證:BC⊥A1C;
(3)若A1A=AB,求二面角A1﹣AC﹣B1的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com