分析 (Ⅰ)設(shè)M(x,y),則由已知可得$\frac{y}{x+\sqrt{2}}$•$\frac{y}{x-\sqrt{2}}$=-$\frac{1}{2}$,由此能夠?qū)С鰴E圓C的方程.
(Ⅱ):設(shè)設(shè)P,Q,R點(diǎn)的坐標(biāo),由$\overrightarrow{RP}$=λ1$\overrightarrow{PF}$,$\overrightarrow{RQ}$=λ2$\overrightarrow{QF}$,得出λ1,λ2是方程x2+4x+2-2y02=0的兩個(gè)根,可得λ1+λ2=-4.
解答 (Ⅰ)解:設(shè)M(x,y),則由已知可得$\frac{y}{x+\sqrt{2}}$•$\frac{y}{x-\sqrt{2}}$=-$\frac{1}{2}$,
化簡(jiǎn)可得E的方程為$\frac{{x}^{2}}{2}+{y}^{2}$=1(x≠±$\sqrt{2}$);
(Ⅱ)證明:設(shè)P,Q,R點(diǎn)的坐標(biāo)分別為P(x1,y1),Q(x2,y2),R(0,y0),
∵$\overrightarrow{RP}$=λ1$\overrightarrow{PF}$,∴(x1,y1-y0)=λ1(1-x1,-y1).
∴x1=$\frac{{λ}_{1}}{1+{λ}_{1}}$,y1=$\frac{{y}_{0}}{1+{λ}_{1}}$.
將P點(diǎn)坐標(biāo)代入到橢圓方程中得:$\frac{1}{2}$($\frac{{λ}_{1}}{1+{λ}_{1}}$)2+($\frac{{y}_{0}}{1+{λ}_{1}}$)2=1,
去分母整理,得λ12+4λ1+2-2y02=0.
同理,由$\overrightarrow{RQ}$=λ2$\overrightarrow{QF}$,可得:λ22+4λ2+2-2y02=0.
∴λ1,λ2是方程x2+4x+2-2y02=0的兩個(gè)根,
∴λ1+λ2=-4.
點(diǎn)評(píng) 本題是橢圓性質(zhì)的綜合應(yīng)用題,考查橢圓方程,考查向量知識(shí)的運(yùn)用,解題時(shí)要注意公式的合理選取和靈活運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x∈R|0<x<1} | B. | {x∈R|0<x<2} | C. | {x∈R|-1<x<0} | D. | {x∈R|-1<x<2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 45 | B. | 50 | C. | 55 | D. | 60 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6和2.4 | B. | 4和5.6 | C. | 4和2.4 | D. | 6和5.6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{10}}{3}$ | B. | $\sqrt{3}$ | C. | $\sqrt{3}$或$\frac{\sqrt{10}}{3}$ | D. | $\frac{\sqrt{10}}{3}$或$\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com