【題目】已知函數(shù)

1若曲線處的切線方程為,求實數(shù)的值;

2設(shè),若對任意兩個不等的正數(shù),,都有恒成立,求實數(shù)的取值范圍;

3若在上存在一點,使得成立,求實數(shù)的取值范圍.

【答案】1;2;3.

【解析】

試題分析:1借助題設(shè)條件運用導(dǎo)數(shù)的幾何意義建立方程求解;2借助題設(shè)運用轉(zhuǎn)化化歸的思想進行轉(zhuǎn)化再運用導(dǎo)數(shù)知識求解;3依據(jù)題設(shè)先將問題進行轉(zhuǎn)化,再借助導(dǎo)數(shù)知識分類整合思想分類探求求解.

試題解析:

1,得

由題意,所以

2,

因為對任意兩個不等的正數(shù),,都有,

設(shè),則,即恒成立,

問題等價于函數(shù),即為增函數(shù),

所以上恒成立,即上恒成立,

所以,即實數(shù)的取值范圍是

3不等式等價于,

整理得,

設(shè),由題意知,在上存在一點,使得,

,

因為,所以,令,得

當(dāng),即時,上單調(diào)遞增,

只需,解得

當(dāng),即時,處取最小值,

,即,可得

考查式子,因為,可得左端大于1,而右端小于1,所以不等式不可能成立.

當(dāng),即時,上單調(diào)遞減,

只需,解得

綜上所述,實數(shù)的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩位同學(xué)學(xué)生參加數(shù)學(xué)競賽培訓(xùn),在培訓(xùn)期間他們參加5項預(yù)賽,成績?nèi)缦拢?/span>

甲:78 76 74 90 82

乙:90 70 75 85 80

)用莖葉圖表示這兩組數(shù)據(jù);

)現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,從平均數(shù)、方差的角度考慮,你認為選派哪位學(xué)生參加合適?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為常數(shù),是自然對數(shù)的底數(shù)),曲線在點處的切線與軸垂直.

1)求的單調(diào)區(qū)間;

2)設(shè),對任意,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一款擊鼓小游戲的規(guī)則如下:每輪游戲都需擊鼓三次,每次擊鼓要么出現(xiàn)一次音樂,要么不出現(xiàn)音樂;每輪游戲擊鼓三次后,出現(xiàn)一次音樂獲得10分,出現(xiàn)兩次音樂獲得20分,出現(xiàn)三次音樂獲得100分,沒有出現(xiàn)音樂則扣除200分(即獲得-200分).設(shè)每次擊鼓出現(xiàn)音樂的概率為,且各次擊鼓是否出現(xiàn)音樂相互獨立.

(1)玩三輪游戲,至少有一輪出現(xiàn)音樂的概率是多少?

(2)設(shè)每輪游戲獲得的分數(shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018126日,甘肅省人民政府辦公廳發(fā)布《甘肅省關(guān)于餐飲業(yè)質(zhì)量安全提升工程的實施意見》,衛(wèi)生部對16所大學(xué)食堂的“進貨渠道合格性”和“食品安全”進行量化評估.滿10分者為“安全食堂”,評分7分以下的為“待改革食堂”.評分在4分以下考慮為“取締食堂”,所有大學(xué)食堂的評分在7~10分之間,以下表格記錄了它們的評分情況:

(1)現(xiàn)從16所大學(xué)食堂中隨機抽取3個,求至多有1個評分不低于9分的概率;

(2)以這16所大學(xué)食堂評分數(shù)據(jù)估計大學(xué)食堂的經(jīng)營性質(zhì),若從全國的大學(xué)食堂任選3個,記表示抽到評分不低于9分的食堂個數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】供電部門對某社區(qū)位居民2017年12月份人均用電情況進行統(tǒng)計后,按人均用電量分為, , , 五組,整理得到如下的頻率分布直方圖,則下列說法錯誤的是

A. 月份人均用電量人數(shù)最多的一組有

B. 月份人均用電量不低于度的有

C. 月份人均用電量為

D. 在這位居民中任選位協(xié)助收費,選到的居民用電量在一組的概率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有些事,有些人會永遠留在腦海,不會忘記,不會褪色.其實沒什么放不下的,只是會覺得,付出了這么多時間,卻始終沒有被感動......已知拋物線,且,三點中恰有兩點在拋物線上,另一點是拋物線的焦點.

(1)求證:、三點共線;

(2)若直線過拋物線的焦點且與拋物線交于、兩點,點軸的距離為,點軸的距離為,求的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】班主任為了對本班學(xué)生的考試成績進行分析,決定從本班24名女同學(xué),18名男同學(xué)中隨機抽取一個容量為7的樣本進行分析.

(1)如果按照性別比例分層抽樣,可以得到多少個不同的樣本?(寫出算式即可,不必計算出結(jié)果)

(2)如果隨機抽取的7名同學(xué)的數(shù)學(xué),物理成績(單位:分)對應(yīng)如下表:

學(xué)生序號

1

2

3

4

5

6

7

數(shù)學(xué)成績

60

65

70

75

85

87

90

物理成績

70

77

80

85

90

86

93

①若規(guī)定85分以上(包括85分)為優(yōu)秀,從這7名同學(xué)中抽取3名同學(xué),記3名同學(xué)中數(shù)學(xué)和物理成績均為優(yōu)秀的人數(shù)為,求的分布列和數(shù)學(xué)期望;

②根據(jù)上表數(shù)據(jù),求物理成績關(guān)于數(shù)學(xué)成績的線性回歸方程(系數(shù)精確到0.01);若班上某位同學(xué)的數(shù)學(xué)成績?yōu)?6分,預(yù)測該同學(xué)的物理成績?yōu)槎嗌俜郑?/span>

附:線性回歸方程

其中,.

76

83

812

526

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一批材料可以建成200m的圍墻,若用此材料在一邊靠墻的地方圍成一塊矩形場地,中間用同樣的材料隔成三個面積相等的矩形,如何設(shè)計這塊矩形場地的長和寬,能使面積最大,并求出最大面積.

查看答案和解析>>

同步練習(xí)冊答案