11.已知$\overrightarrow a$=(2sinx,cos2x),$\overrightarrow b$=($\sqrt{3}$cosx,2),f(x)=$\overrightarrow a$•$\overrightarrow b$.
(1)求f(x)的最小正周期及單調(diào)遞減區(qū)間;
(2求函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]上的最大值和最小值.

分析 (1)由f(x)=$\overrightarrow a$•$\overrightarrow b$.根據(jù)向量的數(shù)量積的運(yùn)用可得f(x)的解析式,化簡(jiǎn),利用周期公式求函數(shù)的最小正周期,最后將內(nèi)層函數(shù)看作整體,放到正弦函數(shù)的減區(qū)間上,解不等式得函數(shù)的單調(diào)遞減區(qū)間;
(2)x∈[0,$\frac{π}{2}$]上時(shí),求出內(nèi)層函數(shù)的取值范圍,結(jié)合三角函數(shù)的圖象和性質(zhì),可得出f(x)的最大值和最小值.

解答 解:$\overrightarrow a$=(2sinx,cos2x),$\overrightarrow b$=($\sqrt{3}$cosx,2),
由f(x)=$\overrightarrow a$•$\overrightarrow b$=2$\sqrt{3}$sinxcosx+2cos2x=$\sqrt{3}$sin2x+cos2x+1=2sin(2x+$\frac{π}{6}$)+1
(1)∴f(x)的最小正周期T=$\frac{2π}{2}=π$.
由2k$π+\frac{π}{2}$≤2x+$\frac{π}{6}$≤$\frac{3π}{2}+2kπ$,k∈Z.
得:k$π+\frac{π}{6}$≤x≤$\frac{2π}{3}+kπ$
∴f(x)的單調(diào)遞減區(qū)間為[:k$π+\frac{π}{6}$,$\frac{2π}{3}+kπ$],k∈Z.
(2)x∈[0,$\frac{π}{2}$]上時(shí),
可得:2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{7π}{6}$]
當(dāng)2x+$\frac{π}{6}$=$\frac{7π}{6}$時(shí),函數(shù)f(x)取得最小值為2sin$\frac{7π}{6}$+1=0.
當(dāng)2x+$\frac{π}{6}$=$\frac{π}{2}$時(shí),函數(shù)f(x)取得最小值為2sin$\frac{π}{2}$+1=3.
故得函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]上的最大值3,最小值0.

點(diǎn)評(píng) 本題主要考查對(duì)三角函數(shù)的化簡(jiǎn)能力和三角函數(shù)的圖象和性質(zhì)的運(yùn)用,利用三角函數(shù)公式將函數(shù)進(jìn)行化簡(jiǎn)是解決本題的關(guān)鍵.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知實(shí)數(shù)x,y滿(mǎn)足約束條件$\left\{{\begin{array}{l}{2x-y+1≥0}\\{x≤1}\\{x-y≤0}\end{array}}\right.$則z=3x-2y的最小值是-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知 a=${4}^{\frac{2}{3}}$,b=${3}^{\frac{2}{3}}$,${c=25}^{\frac{1}{3}}$,則( 。
A.b<c<aB.a<b<cC.b<a<cD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知f(x)=xlnx
(1)當(dāng)x∈(0,e](e是自然常數(shù))時(shí)求f(x)的極小值;
(2)求f(x)在點(diǎn)(e,f(e))(e是自然常數(shù))處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知集合M={1,2,3,4,5},集合N={x|log4x≥1},則M∩N=( 。
A.{1,2,3}B.{4,5}C.ND.M

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知球O的表面積為25π,長(zhǎng)方體的八個(gè)頂點(diǎn)都在球O的球面上,則這個(gè)長(zhǎng)方體的表面積的最大值為( 。
A.50B.100C.50πD.100π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若圓${C_1}:{(x-1)^2}+{(y-2)^2}=4$與圓${C_2}:{(x+1)^2}+{y^2}=8$相交于點(diǎn)A,B,則|AB|=$\sqrt{14}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知2件次品和3件正品混放在一起,現(xiàn)需要通過(guò)檢測(cè)將其區(qū)分,每次隨機(jī)檢測(cè)一件產(chǎn)品,檢測(cè)后不放回,直到檢測(cè)出2件次品或者檢測(cè)出3件正品時(shí)檢測(cè)結(jié)束.
(1)求第一次檢測(cè)出的是次品且第二次檢測(cè)出的是正品的概率;
(2)已知每檢測(cè)一件產(chǎn)品需要費(fèi)用100元,設(shè)X表示直到檢測(cè)出2件次品或者檢測(cè)出3件正品時(shí)所需要的檢測(cè)費(fèi)用(單位:元),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.2C${\;}_{9}^{0}$-C${\;}_{9}^{1}$+2C${\;}_{9}^{2}$-C${\;}_{9}^{3}$+2C${\;}_{9}^{4}$-C${\;}_{9}^{5}$+2C${\;}_{9}^{6}$-C${\;}_{9}^{7}$+2C${\;}_{9}^{8}$-C${\;}_{9}^{9}$=256.

查看答案和解析>>

同步練習(xí)冊(cè)答案