6.2C${\;}_{9}^{0}$-C${\;}_{9}^{1}$+2C${\;}_{9}^{2}$-C${\;}_{9}^{3}$+2C${\;}_{9}^{4}$-C${\;}_{9}^{5}$+2C${\;}_{9}^{6}$-C${\;}_{9}^{7}$+2C${\;}_{9}^{8}$-C${\;}_{9}^{9}$=256.

分析 先將奇數(shù)項(xiàng) 的二項(xiàng)式系數(shù)放在一起偶數(shù)項(xiàng)的二項(xiàng)式系數(shù)放在一起,利用二項(xiàng)式系數(shù)和的性質(zhì):奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和等于偶數(shù)項(xiàng)的二項(xiàng)式系數(shù)和等于2n-1

解答 解:2C90-C91+2C92-C93+2C94-C95+2C96-C97+2C98-C99
=2(C90+C92+C94+C98)-(C91+C93+C95+C97+C99
=2×28-28
=256.
故答案為:256.

點(diǎn)評(píng) 本題考查二項(xiàng)式系數(shù)的性質(zhì):奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和等于偶數(shù)項(xiàng)的二項(xiàng)式系數(shù)和等于2n-1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知$\overrightarrow a$=(2sinx,cos2x),$\overrightarrow b$=($\sqrt{3}$cosx,2),f(x)=$\overrightarrow a$•$\overrightarrow b$.
(1)求f(x)的最小正周期及單調(diào)遞減區(qū)間;
(2求函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{1}{3}$x3-ax2+(a2-1)x+b(a,b∈R)
(1)若x=1為f(x)的極值點(diǎn),求a的值;
(2)若y=f(x)的圖象在點(diǎn)(1,f(1))處的切線方程為x+y-3=0,求f(x)在區(qū)間[-2,4]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,邊長(zhǎng)為2的正方形 A BCD的頂點(diǎn) A,B分別在兩條互相垂直的射線 OP,OQ上滑動(dòng),則$\overrightarrow{{O}C}•\overrightarrow{{O}D}$的最大值為( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知不等式|2x-a|≤3的解集為[-1,2].
(Ⅰ)求a的值;
(Ⅱ)若|x-m|<a,求證:|x|<|m|+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知α=-1090°.
(1)把α寫成β+k•360°(k∈Z,0°≤β<360°)的形式,并指出它是第幾象限角
(2)寫出與α終邊相同的角θ構(gòu)成的集合S,并把S中適合不等式-360°≤θ<360°的元素θ寫出來.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知E(2,2)是拋物線C:y2=2px上一點(diǎn),經(jīng)過點(diǎn)D(2,0)的直線l與拋物線C交于A,B兩點(diǎn)(不同于點(diǎn)E),直線EA,EB分別交直線x=-2于點(diǎn)M,N
(1)求拋物線方程及其焦點(diǎn)坐標(biāo),準(zhǔn)線方程;
(2)已知O為原點(diǎn),求證:∠MON為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若$\overrightarrow$=(cos$\frac{π}{12}$,cos$\frac{5π}{12}$),|$\overrightarrow{a}$|=2|$\overrightarrow$|,且($\sqrt{3}$$\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow$=-2,則向量$\overrightarrow{a}$,$\overrightarrow$的夾角為( 。
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{5π}{6}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在Rt△ABC中,∠C=90°,AC=4,則$\overrightarrow{AB}$•$\overrightarrow{CA}$等于( 。
A.-16B.-8C.16D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案