14.某幾何體的三視圖如圖所示,其中側(cè)視圖的下半部分曲線為半圓弧,則該幾何體的表面積為$5π+16+2\sqrt{3}$.

分析 由三視圖知該幾何體是一個正三棱柱和一個半圓柱的組合體,由三視圖求出幾何元素的長度,由條件和面積公式求出各個面的面積,加起來求出幾何體的表面積.

解答 解:由三視圖可知該幾何體是一個正三棱柱和一個半圓柱的組合體,
三棱柱的兩個側(cè)面面積之和為2×4×2=16,
兩個底面面積之和為$2×\frac{1}{2}×2\sqrt{3}$=2$\sqrt{3}$;
半圓柱的側(cè)面積為π×1×4=4π,兩個底面面積之和為$2×\frac{1}{2}×π×{1}^{2}=π$,
所以幾何體的表面積為$5π+16+2\sqrt{3}$,
故答案為:$5π+16+2\sqrt{3}$.

點評 本題考查三視圖求幾何體的表面積,由三視圖正確復原幾何體是解題的關鍵,考查空間想象能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

17.設平面直角坐標系xOy中,曲線G:y=$\frac{{x}^{2}}{2}$+$\frac{a}{2}$x-a2(x∈R),a為常數(shù).
(1)若a≠0,曲線G的圖象與兩坐標軸有三個交點,求經(jīng)過這三個交點的圓C的一般方程;
(2)在(1)的條件下,求圓心C所在曲線的軌跡方程;
(3)若a=0,已知點M(0,3),在y軸上存在定點N(異于點M)滿足:對于圓C上任一點P,都有$\frac{|PN|}{|PM|}$為一常數(shù),試求所有滿足條件的點N的坐標及該常數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.甲、乙、丙三個袋子中分別裝有5個小球(這些球除顏色外都相同),甲袋中裝有4個紅球和1個綠球,乙袋中裝有1個白球、3個紅球和1個綠球,丙袋中裝有2個白球和3個紅球.
(Ⅰ)若從甲袋中有放回的抽取3次(每次抽取1個小球),求至少有兩次抽到紅球的概率;
(II)若從乙、丙兩個袋子中各抽取2個小球,用ξ表示抽到的4個小球中白球的個數(shù),求ξ的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,已知四棱錐P-ABCD的底面是菱形,PA⊥平面ABCD,∠ABC=60°,E,F(xiàn),H分別是BC,PC,PD的中點.
(Ⅰ)證明:AE⊥PD;
(Ⅱ)設平面PAB∩平面PCD=l,求證:FH∥l;
(Ⅲ)設H是棱PD上的動點,若EH與平面PAD所成最大角的正切值為$\frac{\sqrt{6}}{2}$,求二面角A-EF-G的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.圓柱挖去兩個全等的圓錐所得幾何體的三視圖如圖所示,則其表面積為( 。
A.30πB.48πC.66πD.78π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.一個幾何體的三視圖如圖所示,則這個幾何體的體積為8πcm3..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.如圖,若一個空間幾何體的三視圖,正視圖和俯視圖都是直角三角形,其直角邊均為1,俯視圖是邊長為1的正方形,則該幾何體的表面積為( 。
A.1+$\sqrt{2}$B.2+2$\sqrt{2}$C.$\frac{1}{3}$D.2+$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.一個空間幾何體的三視圖如圖所示,則這個幾何體的表面積為( 。
A.26+4$\sqrt{2}$B.27+4$\sqrt{2}$C.34+4$\sqrt{2}$D.17+4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=lnx-x.
(1)求f(x)的單調(diào)區(qū)間;
(2)已知數(shù)列{an}的通項公式為an=1+$\frac{1}{{2}^{n}}$(n∈N*),求證:a1a2a3…an<e(e為自然對數(shù)的底數(shù));
(3)若k<$\frac{xf(x)+{x}^{2}}{x-1}$對任意x>2恒成立,求實數(shù)k的最大值.

查看答案和解析>>

同步練習冊答案