某人隨機(jī)地將編號為1,2,3,4的四個大小相同的小球放入編號為1,2,3,4的四個型號相同的盒子中,每個盒子放一個球,當(dāng)球的編號與盒子的編號相同時叫做“放法恰當(dāng)”,否則叫做“放法不恰當(dāng)”.設(shè)放法恰當(dāng)?shù)那闆r數(shù)為隨即變量ξ.
(1)求ξ的分布列;
(2)求ξ的期望與方差.

解:由題意ξ可能取:0,1,2,4,
,,
∴ξ的分布列為:
ξ012 4
P
…(9分)
∴Eξ==1.
Dξ=(0-1)2×+(1-1)2×+(2-1)2×+(4-1)2×=1…(12分)
分析:由題意ξ可能。0,1,2,4,再利用古典概型隨機(jī)事件的概率公式及排列數(shù)與組合數(shù)的有關(guān)知識分別求出其發(fā)生的概率,即可求出ξ的分布列,然后根據(jù)期望公式與方差公式求出答案.
點評:此題考查了等可能事件的概率公式與離散型隨機(jī)變量的分布列,并且利用分布列與有關(guān)的公式求出數(shù)學(xué)期望與方差,并且也考查了排列組合的有關(guān)知識,此題屬于基礎(chǔ)題,高考命題的熱點之一,此類型的題目一般以大題的形式出現(xiàn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某人隨機(jī)地將編號為1,2,3的三個小球放入編號為1,2,3的三個盒子中,每個盒子放一個小球,全部放完.則編號為2的小球放入到編號為奇數(shù)的盒子中的概率等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某人隨機(jī)地將編號為1,2,3,4的四個小球放入編號為1,2,3,4的四個盒子中,每個盒子放一個小球,全部放完.
(1)求編號為奇數(shù)的小球放入到編號為奇數(shù)的盒子中的概率;
(2)當(dāng)一個小球放到其中一個盒子時,若球的編號與盒子的編號相同時,稱該球是“放對”的,否則稱該球是“放錯”的,求至多有2個球“放對”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某人隨機(jī)地將編號為1,2,3,4的四個大小相同的小球放入編號為1,2,3,4的四個型號相同的盒子中,每個盒子放一個球,當(dāng)球的編號與盒子的編號相同時叫做“放法恰當(dāng)”,否則叫做“放法不恰當(dāng)”.設(shè)放法恰當(dāng)?shù)那闆r數(shù)為隨即變量ξ.
(1)求ξ的分布列;
(2)求ξ的期望與方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某人隨機(jī)地將編號為1,2,3,4的四個小球放入編號為1,2,3,4的四個盒子中,每個盒子放一個小球,全部放完。

   (I)求編號為奇數(shù)的小球放入到編號為奇數(shù)的盒子中的概率值;

   (II)當(dāng)一個小球放到其中一個盒子時, 若球的編號與盒子的編號相同 ,稱這球是“放對”的,否則稱這球是“放錯”的。設(shè)“放對”的球的個數(shù)為的分布列及數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:湖北省襄樊五中2010年高三年級5月模擬(理) 題型:解答題

 某人隨機(jī)地將編號為1,2,3,4的四個大小相同的小球放入編號為1,2,3,4的四個型號相同的盒子中,每個盒子放一個球,當(dāng)球的編號與盒子的編號相同時叫做“放法恰當(dāng)”,否則叫做“放法不恰當(dāng)”.設(shè)放法恰當(dāng)?shù)那闆r數(shù)為隨即變量.

(1)求的分布列;

(2)求的期望與方差.

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案