【題目】如圖,在三棱柱ABC﹣A1B1C1中,AA1C1C是邊長(zhǎng)為4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.

(Ⅰ)求證:AA1⊥平面ABC;

(Ⅱ)求證二面角A1﹣BC1﹣B1的余弦值;

【答案】見(jiàn)解析;( .

【解析】試題分析:)先利用正方形得到線線垂直,再利用面面垂直的性質(zhì)定理進(jìn)行證明;()利用勾股定理證明線線垂直,合理建立空間直角坐標(biāo)系,寫(xiě)出出相關(guān)點(diǎn)的坐標(biāo),求出相關(guān)平面的法向量,再通過(guò)空間向量的夾角公式進(jìn)行求解.

試題解析:(I)證明:∵AA1C1C是正方形,∴AA1⊥AC.又∵平面ABC⊥平面AA1C1C,平面ABC∩平面AA1C1C=AC,

∴AA1⊥平面ABC.

(II)由AC=4,BC=5,AB=3.

∴AC2+AB2=BC2,∴AB⊥AC.

建立如圖所示的空間直角坐標(biāo)系,則A1(0,0,4),B(0,3,0),B1(0,3,4),C1(4,0,4),∴,

設(shè)平面A1BC1的法向量為,平面B1BC1的法向量為=

,令,解得

,令,解得

===

∴二面角A1﹣BC1﹣B1的余弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】共享汽車的出現(xiàn)為我們的出行帶來(lái)了極大的便利,當(dāng)然也為投資商帶來(lái)了豐厚的利潤(rùn),F(xiàn)某公司瞄準(zhǔn)這一市場(chǎng),準(zhǔn)備投放共享汽車。該公司取得了在個(gè)省份投放共享汽車的經(jīng)營(yíng)權(quán),計(jì)劃前期一次性投入元. 設(shè)在每個(gè)省投放共享汽車的市的數(shù)量相同(假設(shè)每個(gè)省的市的數(shù)量足夠多),每個(gè)市都投放輛共享汽車.由于各個(gè)市的多種因素的差異,在第個(gè)市的每輛共享汽車的管理成本為()元(其中為常數(shù)).經(jīng)測(cè)算,若每個(gè)省在個(gè)市投放共享汽車,則該公司每輛共享汽車的平均綜合管理費(fèi)用為元.(本題中不考慮共享汽車本身的費(fèi)用)

注:綜合管理費(fèi)用=前期一次性投入的費(fèi)用+所有共享汽車的管理費(fèi)用,平均綜合管理費(fèi)用=綜合管理費(fèi)用÷共享汽車總數(shù).

(1)的值;

(2)問(wèn)要使該公司每輛共享汽車的平均綜合管理費(fèi)用最低,則每個(gè)省有幾個(gè)市投放共享汽車?此時(shí)每輛共享汽車的平均綜合管理費(fèi)用為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一臺(tái)風(fēng)中心在港口南偏東方向上,距離港口千米處的海面上形成,并以每小時(shí)千米的速度向正北方向移動(dòng),距臺(tái)風(fēng)中心千米以內(nèi)的范圍將受到臺(tái)風(fēng)的影響,則港口受到臺(tái)風(fēng)影響的時(shí)間為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某氣象儀器研究所按以下方案測(cè)試一種彈射型氣象觀測(cè)儀器的垂直彈射高度:A、B、C三地位于同一水平面上,在C處進(jìn)行該儀器的垂直彈射,觀測(cè)點(diǎn)AB兩地相距100米,∠BAC60°,在A地聽(tīng)到彈射聲音的時(shí)間比在B地晚

秒. A地測(cè)得該儀器彈至最高點(diǎn)H時(shí)的仰角為30°.

(1)求A、C兩地的距離;

(2)求該儀器的垂直彈射高度CH.(聲音的傳播速度為340米/秒)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,動(dòng)點(diǎn)滿足,且,則方向上的投影的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,側(cè)棱底面,底面為長(zhǎng)方形,且,的中點(diǎn),作于點(diǎn).

(1)證明:平面;

(2)若三棱錐的體積為,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐V-ABC中,平面VAB平面ABC VAB為等邊三角形,ACBCAC=BC=O,M分別為AB,VA的中點(diǎn)。

(I)求證:VB//平面MOC;

II)求證:平面MOC平面VAB

(III)求三棱錐V-ABC的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若正數(shù)x,y滿足15x﹣y=22,則x3+y3﹣x2﹣y2的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,圓心為,定點(diǎn) 為圓上一點(diǎn),線段上一點(diǎn)滿足,直線上一點(diǎn),滿足

(Ⅰ)求點(diǎn)的軌跡的方程;

(Ⅱ)為坐標(biāo)原點(diǎn), 是以為直徑的圓,直線相切,并與軌跡交于不同的兩點(diǎn).當(dāng)且滿足時(shí),求面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案