【題目】已知圓,圓心為,定點, 為圓上一點,線段上一點滿足,直線上一點,滿足

(Ⅰ)求點的軌跡的方程;

(Ⅱ)為坐標原點, 是以為直徑的圓,直線相切,并與軌跡交于不同的兩點.當且滿足時,求面積的取值范圍.

【答案】(Ⅰ);(Ⅱ) .

【解析】試題分析(Ⅰ)分析題意可得點滿足的幾何條件,根據(jù)橢圓的定義可得軌跡,從而可求得軌跡方程;(Ⅱ)先由直線相切得到,將直線方程與橢圓方程聯(lián)立,并結(jié)合一元二次方程根與系數(shù)的關(guān)系可得,由,進一步得到k的范圍,最后根據(jù)三角形面積公式并結(jié)合函數(shù)的單調(diào)性求的取值范圍。

試題解析

(Ⅰ)∵

為線段中點

為線段的中垂線

∴由橢圓的定義可知的軌跡是以為焦點,長軸長為的橢圓,

設(shè)橢圓的標準方程為,

, ,

。

∴點的軌跡的方程為。

(Ⅱ)∵圓與直線相切,

,即,

,消去.

∵直線與橢圓交于兩個不同點,

代入上式,可得,

設(shè), ,

,

,

,

,解得.滿足

,

設(shè),則.

,

面積的取值范圍為。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知(2x3y)9a0x9a1x8ya2x7y2a9y9

(1)各項系數(shù)之和;

(2)所有奇數(shù)項系數(shù)之和;

(3)系數(shù)絕對值的和;

(4)分別求出奇數(shù)項的二項式系數(shù)之和與偶數(shù)項的二項式系數(shù)之和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】本小題滿分12分ABC中,角A,B,C所對的邊分別為a,b,c已知a=3,cos A,B=A+

1b的值;

2ABC的面積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中, 底面為菱形,平面,點在棱上.

(Ⅰ)求證:直線平面;

(Ⅱ)若平面,求證:

(Ⅲ)是否存在點,使得四面體的體積等于四面體的體積的?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩定點, 和一動點,給出下列結(jié)論:

①若,則點的軌跡是橢圓;

②若,則點的軌跡是雙曲線;

③若,則點的軌跡是圓;

④若,則點的軌跡關(guān)于原點對稱;

⑤若直線斜率之積等于,則點的軌跡是橢圓(除長軸兩端點).

其中正確的是__________(填序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,甲船以每小時30海里的速度向正北方向航行,乙船按固定方向勻速直線航行當甲船位于A1處時,乙船位于甲船的南偏西75°方向的B1,此時兩船相距20海里當甲船航行20分鐘到達A2處時乙船航行到甲船的南偏西60°方向的B2,此時兩船相距10海里問:乙船每小時航行多少海里?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】判斷下列命題的真假,并說明理由.

(1)x∈R,都有x2x+1>;

(2)α,β,使cos(αβ)=cos α-cos β;

(3)xy∈N,都有(xy)∈N;

(4)x,y∈Z,使xy=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù),曲線在點處的切線方程為.

(1)求的解析式;

(2)設(shè),證明:函數(shù)圖象上任一點處的切線與兩坐標軸所圍成的三角形面積為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,(1)已知ab,B=45°,求A、Cc;

(2)已知sin A∶sin B∶sin C=(+1)∶(-1)∶,求最大角.

查看答案和解析>>

同步練習冊答案