由曲線y=和y=x3所圍成的封閉圖形的面積為( )
A.
B.
C.
D.
【答案】分析:作出兩個(gè)曲線的圖象,求出它們的交點(diǎn),由此可得所求面積為函數(shù)-x3在區(qū)間[0,1]上的定積分的值,再用定積分計(jì)算公式加以運(yùn)算即可得到本題答案
解答:解:∵曲線y=x3和曲線y=的交點(diǎn)為A(1,1)和原點(diǎn)O
∴曲線y=x3和曲線y=所圍圖形的面積為
S=-x3)dx=(-=-
故選:B
點(diǎn)評(píng):本題求兩條曲線圍成的曲邊圖形的面積,著重考查了定積分的幾何意義和積分計(jì)算公式等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有以下五個(gè)命題
①設(shè)a>0,f(x)=ax2+bx+c,曲線y=f(x)在點(diǎn)P(x0,f(x0))處切線的傾斜角的取值范圍為[0,
π
4
],則點(diǎn)P到曲線y=f(x)對(duì)稱軸距離的取值范圍為[0,
1
2a
];
②一質(zhì)點(diǎn)沿直線運(yùn)動(dòng),如果由始點(diǎn)起經(jīng)過(guò)t稱后的位移為s=
1
3
t3-
3
2
t2+2t
,那么速度為零的時(shí)刻只有1秒末;
③若函數(shù)f(x)=loga(x3-ax)(a>0,且a≠1)在區(qū)間(-
1
2
,0)
內(nèi)單調(diào)遞增,則a的取值范圍是[
3
4
,1)
;
④定義在R上的偶函數(shù)f(x),滿足f(x+1)=-f(x),則f(x)的圖象關(guān)于x=1對(duì)稱;
⑤函數(shù)y=f(x-2)和y=f(2-x)的圖象關(guān)于直線x=2對(duì)稱.其中正確的有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由曲線y=
x
和y=x3所圍成的封閉圖形的面積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:選修設(shè)計(jì)同步數(shù)學(xué)人教A(2-2) 人教版 題型:044

求由曲線yx3y=2x所圍成的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求由曲線y=x3y=2x所圍成的圖形的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案