已知:如圖|
OA
|=|
OB
|=1,
OA
OB
的夾角為120°,
OC
OA
的夾角為30°,若
OC
OA
OB
(λ,μ∈R)則
λ
μ
等于(  )
A.
3
2
B.
2
3
3
C.
1
2
D.2
精英家教網(wǎng)
如圖所示:
根據(jù)平行四邊形法則將向量
OC
沿
OA
OB
方向進(jìn)行分解,
精英家教網(wǎng)

則由題意可得 OD=λ,CD=μ,∠COD=30°,∠OCD=90°,
∠Rt△OCD中,sin∠COD=sin30°=
1
2
=
CD
OD
=
μ
λ
,
λ
μ
=2,
故選 D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•黃岡模擬)已知:如圖|
OA
|=|
OB
|=1,
OA
OB
的夾角為120°,
OC
OA
的夾角為30°,若
OC
OA
OB
(λ,μ∈R)則
λ
μ
等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,兩個(gè)長(zhǎng)度為1的平面向量
OA
OB
,它們的夾角為
3
,點(diǎn)C是以O(shè)為圓心的劣弧AB的中點(diǎn).求:
(1)|
OA
+
OB
|
的值;
(2)
AB
AC
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,射線OAy=2x(x>0),射線OBy= –2x(x>0),動(dòng)點(diǎn)Px, y)在的內(nèi)部,N,四邊形ONPM的面積為2..

(I)動(dòng)點(diǎn)P的縱坐標(biāo)y是其橫坐標(biāo)x的函數(shù),求這個(gè)函數(shù)y=f(x)的解析式;

(II)確定y=f(x)的定義域.

 


查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆吉林長(zhǎng)春市高二第二次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知,如圖,AB是⊙O的直徑,AC切⊙O于點(diǎn)A,AC=AB,CO交⊙O于點(diǎn)P,CO的延長(zhǎng)線交⊙O于點(diǎn)F,   BP的延長(zhǎng)線交AC于點(diǎn)E.

⑴求證:FA∥BE;

⑵求證:

【解析】本試題主要是考查了平面幾何中圓與三角形的綜合運(yùn)用。

(1)要證明線線平行,主要是通過(guò)證明線線平行的判定定理得到

(2)利用三角形△APC∽△FAC相似,來(lái)得到線段成比列的結(jié)論。

證明:(1)在⊙O中,∵直徑AB與FP交于點(diǎn)O ∴OA=OF

 ∴∠OAF=∠F  ∵∠B=∠F  ∴∠OAF=∠B ∴FA∥BE

(2)∵AC為⊙O的切線,PA是弦  ∴∠PAC=∠F

∵∠C=∠C ∴△APC∽△FAC  ∴

 ∵AB=AC  ∴

 

查看答案和解析>>

同步練習(xí)冊(cè)答案