集合A={x|-2<x≤5},B={x|x2-5x+6=0},C={x|x<b},T={x|x2-ax+a2-19=0}
(1)若A⊆C,求b的取值范圍
(2)若T∩B=T∪B,求a的值.
考點:集合的包含關系判斷及應用
專題:計算題,集合
分析:(1)利用集合的包含關系,可求求b的取值范圍
(2)若T∩B=T∪B,則T=B,即可求a的值.
解答: 解:(1)∵A={x|-2<x≤5},C={x|x<b},A⊆C,
∴b>5;
(2)∵T∩B=T∪B,
∴T=B,
∵B={x|x2-5x+6=0},T={x|x2-ax+a2-19=0}
∴利用韋達定理求得a=5.
點評:本題考查集合的包含關系,考查集合的相等關系,考查學生的計算能力,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線方程為y=
3
x,關于x的方程ax2+bx-
a2+b2
=0的兩根為m,n,則點P(m,n)(  )
A、在圓x2+y2=7內(nèi)
B、在橢圓
x2
7
+
y2
6
=1內(nèi)
C、在圓x2+y2=7上
D、在橢圓
x2
7
+
y2
6
=1上

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若O是平面上的定點,A、B、C是平面上不共線的三點,且滿足
OP
=
OC
+λ(
CB
+
CA
)(λ∈R),則P點的軌跡一定過△ABC的( 。
A、外心B、內(nèi)心C、重心D、垂心

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(
1
4
x-cosx,則f(x)在[0,2π]上的零點個數(shù)( 。
A、.1B、.2C、.3D、.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}(n∈N)中,a1=0,當3an<n2時,an+1=n2,當3an>n2時,an+1=3an,求a2,a3,a4,a5,猜測數(shù)列的通項公式an并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l過點P(-4,0)且與圓C:(x+1)2+(y-2)2=25交于A,B兩點.
(1)如果P為弦AB的中點時,求直線l的方程?
(2)如果|AB|=8,求直線l的方程?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知遞增的等比數(shù)列{an}中,且a2=4,a6=64.
(1)求數(shù)列{an}的通項公式;
(2)若bn=anlog2an,求數(shù)列{bn}的前n項和Tn;
(3)求n•2n+1-Tn>50成立的最小正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)列{an}為等比數(shù)列,其中a7=1,且a4,a5+1,a6成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)是否存在正整數(shù)m,使得當n>m時,|an|<
1
2014
恒成立?若存在,求出m的值構成的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知Sn為數(shù)列{an}的前n項和,且2an-1=Sn,n∈N*
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足
b1
a1
+
b2
a2
+
b3
a3
+…+
bn
an
=n-
n
2n
,n∈N*,求{bn}的前n項和Tn

查看答案和解析>>

同步練習冊答案