某工廠有一段舊墻長14m,現(xiàn)準(zhǔn)備利用這段舊墻為一面建造平面圖形為矩形,面積為126m2的廠房,工程條件是:①建1m新墻的費(fèi)用為a元;=2 ②修1m舊墻的費(fèi)用為元;=3 ③拆去1m的舊墻,用可得的建材建1m的新墻的費(fèi)用為元,經(jīng)討論有兩種方案:
(1)利用舊墻一段x m(0<x<14)為矩形一邊;
(2)矩形廠房利用舊墻的一面邊長x≥14;
問如何利用舊墻建墻費(fèi)用最省?試比較(1)(2)兩種方案哪個更好.
【答案】分析:根據(jù)題意將實際問題的數(shù)學(xué)模型建立起來是解決本題的關(guān)鍵.利用兩種不同的方案分別給出費(fèi)用的表達(dá)式,通過比較大小確定出哪個方案更好.
解答:解:(1)方案:修舊墻費(fèi)用為x•元,拆舊墻造新墻費(fèi)用為(14-x)•
其余新墻費(fèi)用:
∴總費(fèi)用(0<x<14)
≥35a,當(dāng)x=12時,ymin=35a;
(2)方案,利用舊墻費(fèi)用為14•=(元),建新墻費(fèi)用為(元)
總費(fèi)用為:(x≥14)
設(shè),則,
當(dāng)x≥14時,f'(x)>0,f(x)為增函數(shù),∴f(x)min=f(14)=35.5a.
由35a<35.5a知,采用(1)方案更好些.
答:采用(1)方案更好些.
點評:本題考查函數(shù)模型的應(yīng)用問題,考查建立函數(shù)模型解決實際問題的意識,通過建立的模型選擇合適的方法求解相應(yīng)的最值,通過最值之間的關(guān)系比較進(jìn)行選擇.突出數(shù)學(xué)的應(yīng)用價值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某工廠有一段舊墻長14m,現(xiàn)準(zhǔn)備利用這段舊墻為一面建造平面圖形為矩形,面積為126m2的廠房,工程條件是:①建1m新墻的費(fèi)用為a元;=2 ②修1m舊墻的費(fèi)用為
a
4
元;=3 ③拆去1m的舊墻,用可得的建材建1m的新墻的費(fèi)用為
a
2
元,經(jīng)討論有兩種方案:
(1)利用舊墻一段x m(0<x<14)為矩形一邊;
(2)矩形廠房利用舊墻的一面邊長x≥14;
問如何利用舊墻建墻費(fèi)用最。吭嚤容^(1)(2)兩種方案哪個更好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年人教B版高中數(shù)學(xué)必修一 3.4 函數(shù)的應(yīng)用練習(xí)卷(解析版) 題型:解答題

某工廠有一段舊墻長14m,現(xiàn)準(zhǔn)備利用這段舊墻為一面建造平面圖形為矩形,面積為126m2的廠房,工程條件是:

(1) 建1m新墻的費(fèi)用為a元;(2) 修1m舊墻的費(fèi)用為元;(3) 拆去1m的舊墻,用可得的建材建1m的新墻的費(fèi)用為元,經(jīng)討論有兩種方案:

①利用舊墻一段x m(0<x<14)為矩形一邊;

②矩形廠房利用舊墻的一面邊長x≥14,問如何利用舊墻建墻費(fèi)用最省?

試比較①②兩種方案哪個更好。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠有一段舊墻長14m,現(xiàn)準(zhǔn)備利用這段舊墻為一面建造平面圖形為矩形,面積為126m2的廠房,工程條件是:

    (1)建lm新墻的費(fèi)用為a元;(2)修1m舊墻的費(fèi)用為元;(3)拆去1m的舊墻,用可得的建材建1m的新墻的費(fèi)用為元,經(jīng)討論有兩種方案:

   ①利用舊墻一段xm(0<x<14)為矩形一邊;

   ②矩形廠房利用舊墻的一面邊長x≥14,問如何利用舊墻建墻費(fèi)用最省?

試比較①、②兩種方案哪個更好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠有一段舊墻長14m,現(xiàn)準(zhǔn)備利用這段舊墻為一面建造平面圖形為矩形,面積為126m2的廠房,工程條件是:

(1) 建1m新墻的費(fèi)用為a元;(2) 修1m舊墻的費(fèi)用為元;(3) 拆去1m的舊墻,用可得的建材建1m的新墻的費(fèi)用為元,經(jīng)討論有兩種方案:

                ①利用舊墻一段x m(0<x<14)為矩形一邊;

②矩形廠房利用舊墻的一面邊長x≥14,問如何利用舊墻建墻費(fèi)用最省?

試比較①②兩種方案哪個更好。

查看答案和解析>>

同步練習(xí)冊答案