【題目】如圖,在四棱錐中,平面,且,,,點G,H分別為邊,的中點,點M是線段上的動點.
(1)求證:;
(2)若,當(dāng)三棱錐的體積最大時,求點C到平面的距離.
【答案】(1)證明見解析(2)
【解析】
(1)連接,相交于點O.由垂直平分線性質(zhì)可得,由中位線定理可得,從而.再由平面,可得,所以平面,即可得.
(2)根據(jù),,,可求得和,進(jìn)而求得,由相似比與面積比關(guān)系求得,即可由等體積法求得.因而當(dāng)點M與點E重合時取得最大值.由線段關(guān)系求得,再根據(jù)等體積,即可求得點D到平面的距離.
(1)證明:連接,相交于點O.如下圖所示:
平面.平面,
.
又,,
為線段的垂直平分線.
.
∵G,H分別為,的中點,
,
,
又,,平面,
平面.
又平面,
.
(2)由(1)得,,.
,在中,,,
.
在中,.
的面積
,
∵G,H分別為,中點,
.
平面.即平面.
.
顯然,當(dāng)點M與點E重合時,取得最大值,此時.
連接,不難得出.
,.
又易知,
.
∵G是中點,
∴C到平面的距離等于D到平面的距離.
又,
,得.
∴點D到平面的距離為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2+2x﹣4y+3=0.
(1)若直線l:x+y=0與圓C交于A,B兩點,求弦AB的長;
(2)從圓C外一點P(x1,y1)向該圓引一條切線,切點為M,O為坐標(biāo)原點,且有|PM|=|PO|,求使得|PM|取得最小值的點P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司計劃購買1臺機(jī)器,該種機(jī)器使用三年后即被淘汰.在購進(jìn)機(jī)器時,可以一次性額外購買幾次維修服務(wù),每次維修服務(wù)費用200元,另外實際維修一次還需向維修人員支付小費,小費每次50元.在機(jī)器使用期間,如果維修次數(shù)超過購機(jī)時購買的維修服務(wù)次數(shù),則每維修一次需支付維修服務(wù)費用500元,無需支付小費.現(xiàn)需決策在購買機(jī)器時應(yīng)同時一次性購買幾次維修服務(wù),為此搜集并整理了100臺這種機(jī)器在三年使用期內(nèi)的維修次數(shù),得下面統(tǒng)計表:
維修次數(shù) | 8 | 9 | 10 | 11 | 12 |
頻數(shù) | 10 | 20 | 30 | 30 | 10 |
記x表示1臺機(jī)器在三年使用期內(nèi)的維修次數(shù),y表示1臺機(jī)器在維修上所需的費用(單位:元),表示購機(jī)的同時購買的維修服務(wù)次數(shù).
(1)若=10,求y與x的函數(shù)解析式;
(2)若要求“維修次數(shù)不大于”的頻率不小于0.8,求n的最小值;
(3)假設(shè)這100臺機(jī)器在購機(jī)的同時每臺都購買10次維修服務(wù),或每臺都購買11次維修服務(wù),分別計算這100臺機(jī)器在維修上所需費用的平均數(shù),以此作為決策依據(jù),購買1臺機(jī)器的同時應(yīng)購買10次還是11次維修服務(wù)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】地球海洋面積遠(yuǎn)遠(yuǎn)大于陸地面積,隨著社會的發(fā)展,科技的進(jìn)步,人類發(fā)現(xiàn)海洋不僅擁有巨大的經(jīng)濟(jì)利益,還擁有著深遠(yuǎn)的政治利益.聯(lián)合國于第63屆聯(lián)合國大會上將每年的6月8日確定為“世界海洋日”.2019年6月8日,某大學(xué)的行政主管部門從該大學(xué)隨機(jī)抽取100名大學(xué)生進(jìn)行一次海洋知識測試,并按測試成績(單位:分)分組如下:第一組[65,70),第二組[70,75),第二組[75,80),第四組[80,85),第五組[85,90],得到頻率分布直方圖如下圖:
(1)求實數(shù)的值;
(2)若從第四組、第五組的學(xué)生中按組用分層抽樣的方法抽取6名學(xué)生組成中國海洋實地考察小隊,出發(fā)前,用簡單隨機(jī)抽樣方法從6人中抽取2人作為正、副隊長,列舉出所有的基本事件并求“抽取的2人為不同組”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦點與雙曲線的焦點重合,并且經(jīng)過點.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(II) 設(shè)橢圓C短軸的上頂點為P,直線不經(jīng)過P點且與相交于、兩點,若直線PA與直線PB的斜率的和為,判斷直線是否過定點,若是,求出這個定點,否則說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,正確的共有( )
① 因為直線是無限的,所以平面內(nèi)的一條直線就可以延伸到平面外去;
② 兩個平面有時只相交于一個公共點;
③ 分別在兩個相交平面內(nèi)的兩條直線如果相交,則交點只可能在兩個平面的交線上;
④ 一條直線與三角形的兩邊都相交,則這條直線必在三角形所在的平面內(nèi);
A.0個B.1個C.2個D.3個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某口袋內(nèi)裝有一些除顏色不同之外其他均相同的紅球、白球和黑球,從中摸出1個球,摸出紅球的概率是0.42,摸出白球的概率是0.28,若紅球有21個,則黑球有_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)閱讀以下案例,利用此案例的想法化簡.
案例:考察恒等式左右兩邊的系數(shù).
因為右邊,
所以,右邊的系數(shù)為,
而左邊的系數(shù)為,
所以=.
(2)求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com