由曲線y=9-x2,直線y=x+7所圍圖形面積S=
 
考點:定積分在求面積中的應(yīng)用
專題:計算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:聯(lián)立解曲線y=9-x2,直線y=x+7,得它們的交點坐標(biāo),由此可得積分的上、下限,根據(jù)定積分計算公式加以計算,即可得到所求面積.
解答: 解:由曲線y=9-x2,直線y=x+7聯(lián)立,可得曲線y=9-x2,直線y=x+7的交點為(1,8)和A(-2,5),
因此,曲線y=9-x2,直線y=x+7所圍圖形面積是S=
1
-2
(9-x2-x-7)dx=(-
1
2
x2-
1
3
x3+2x)
|
1
-2
=
9
2

故答案為:
9
2
點評:本題主要考查了學(xué)生會求出原函數(shù)的能力,以及考查了數(shù)形結(jié)合的思想,同時會利用定積分求圖形面積的能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

解不等式
x2-4x+1
 3x2-7x+2
≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=3,an+1=2an-1.
(1)求證:數(shù)列{an-1}是等比數(shù)列;
(2)設(shè)
bn=
2n
anan+1
,求證:數(shù)列{bn}的前n項和Sn
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>b,ab≠0,給出下列不等式:①a2>b2;②
1
a
1
b
;③
1
a-b
1
a
,其中恒成立的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若圓錐的側(cè)面積是底面積的3倍,則其母線與底面角的大小為
 
(結(jié)果用反三角函數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是某小組在一次測驗中的數(shù)學(xué)成績的莖葉圖,則平均成績是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某幾何體的三視圖如圖所示,則該幾何體的體積等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

運行如圖所示框圖的相應(yīng)程序,若輸入a,b的值分別為
3
2
2
3
,則輸出M的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,設(shè)
BC
=(2-k,3),
AC
=(2,4)且|
AB
|≤4,k∈Z,則△ABC為直角三角形的概率為
 

查看答案和解析>>

同步練習(xí)冊答案