A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{3}{4}$ |
分析 連接BF、EF,推導出AD⊥面BCF,AE在平面BCF上的射影為EF,設(shè)異面直線AE和CF所成的角為θ,則cosθ=cos∠AEF•cos∠EFC,由此能求出結(jié)果.
解答 解:連接BF、EF,
∵正四面體ABCD中,E、F分別是棱BC和AD的中點,
∴BF⊥AD,CF⊥AD,
又BF∩CF=F,∴AD⊥面BCF,
∴AE在平面BCF上的射影為EF,
設(shè)異面直線AE和CF所成的角為θ,正四面體棱長為1,
則$AE=CF=\frac{{\sqrt{3}}}{2}$,$EF=\frac{{\sqrt{2}}}{2}$.
∵cosθ=cos∠AEF•cos∠EFC,
∴cosθ=$\frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{3}}{2}}×\frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{3}}{2}}$=$\frac{2}{3}$.
故直線AE和CF所成的角的余弦值為$\frac{2}{3}$.
故選:B.
點評 本題考查異面直線所成角的余弦值的求法,考查正四面體、線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,是基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,1] | B. | (0,1) | C. | (1,+∞) | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | x1+x2=8 | B. | x1+x2=4 | C. | y1+y2=8 | D. | y1+y2=4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{2\sqrt{5}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ($-\frac{1}{2}-\frac{1}{2{e}^{2}}$,0) | B. | (0,$\frac{1}{{e}^{2}}$] | C. | (0,$\frac{1}{2}+\frac{1}{2{e}^{2}}$] | D. | ($\frac{1}{2{e}^{2}}-\frac{1}{2}$,$\frac{1}{{e}^{2}}$] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com