8.如圖,正四面體ABCD中,E、F分別是棱BC和AD的中點,則直線AE和CF所成的角的余弦值為(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{4}$D.$\frac{3}{4}$

分析 連接BF、EF,推導出AD⊥面BCF,AE在平面BCF上的射影為EF,設(shè)異面直線AE和CF所成的角為θ,則cosθ=cos∠AEF•cos∠EFC,由此能求出結(jié)果.

解答 解:連接BF、EF,
∵正四面體ABCD中,E、F分別是棱BC和AD的中點,
∴BF⊥AD,CF⊥AD,
又BF∩CF=F,∴AD⊥面BCF,
∴AE在平面BCF上的射影為EF,
設(shè)異面直線AE和CF所成的角為θ,正四面體棱長為1,
則$AE=CF=\frac{{\sqrt{3}}}{2}$,$EF=\frac{{\sqrt{2}}}{2}$.
∵cosθ=cos∠AEF•cos∠EFC,
∴cosθ=$\frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{3}}{2}}×\frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{3}}{2}}$=$\frac{2}{3}$.
故直線AE和CF所成的角的余弦值為$\frac{2}{3}$.
故選:B.

點評 本題考查異面直線所成角的余弦值的求法,考查正四面體、線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

4.設(shè)全集U={x|ex>1},函數(shù)f(x)=$\frac{1}{{\sqrt{x-1}}}$的定義域為A,則∁UA為( 。
A.(0,1]B.(0,1)C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.某路公交車在6:30,7:00,7:30準時發(fā)車,小明同學在6:50至7:30之間到達該站乘車,且到達該站的時刻是隨機的,則他等車時間不超過10分鐘的概率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知拋物線C:y2=8x的焦點為F,過F的直線l與拋物線C交于M(x1,y1),N(x2,y2)兩點,若|MN|=8,則( 。
A.x1+x2=8B.x1+x2=4C.y1+y2=8D.y1+y2=4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.在三棱錐A-BCD中,E、F分別是AB,CD的中點,若AD=BC=2,AD與BC所成的角為θ,EF=$\sqrt{3}$,則sinθ=(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.三棱柱ABC-A1B1C1的側(cè)棱與底面垂直,AA1=AB=AC=1,AB⊥AC,N是BC的中點,點P在A1B1上,且滿足|A1P|=λ|A1B1|,直線PN與平面ABC所成角θ的正切值取最大值時λ的值為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-(x+1)•{e}^{x},x≤a}\\{bx-1,x>a}\end{array}\right.$,若函數(shù)f(x)有最大值M,則M的取值范圍是( 。
A.($-\frac{1}{2}-\frac{1}{2{e}^{2}}$,0)B.(0,$\frac{1}{{e}^{2}}$]C.(0,$\frac{1}{2}+\frac{1}{2{e}^{2}}$]D.($\frac{1}{2{e}^{2}}-\frac{1}{2}$,$\frac{1}{{e}^{2}}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=lnx-$\frac{a}{x}$,g(x)=$\frac{1}{2}{(x-1)^2}$-1.
(Ⅰ)若a>0,試判斷f(x)在定義域內(nèi)的單調(diào)性;
(Ⅱ)若f(x)在[1,e]上的最小值為$\frac{3}{2}$,求a的值;
(Ⅲ)當a=0時,若x≥1時,恒有x•f(x)≤λ[g(x)+x]成立,求λ的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.共享單車的出現(xiàn)方便了人們的出行,深受市民的喜愛,為調(diào)查某校大學生對共享單車的使用情況,從該校8000名學生隨機抽取了100位同學進行調(diào)查,得到這100名同學每周使用共享單車的時間(單位:小時)頻率分布直方圖.

(1)已知該校大一學生有2400人,求抽取的100名學生中大一學生人數(shù);
(2)根據(jù)頻率分布直方圖求該校大學生每周使用共享單車的平均時間;
(3)從抽取的100個樣本中,用分層抽樣的方法抽取使用共享單車時間超過6小時同學5人,再從這5人中任選2人,求這2人使用共享單車時間都不超過8小時的概率.

查看答案和解析>>

同步練習冊答案