【題目】現(xiàn)采用隨機(jī)模擬的方法估計(jì)某運(yùn)動(dòng)員射擊4次,至少擊中3次的概率:先由計(jì)算器給出09之間取整數(shù)值的隨機(jī)數(shù),指定0,1表示沒有擊中目標(biāo),2,3,4,56,7, 89表示擊中目標(biāo),以4個(gè)隨機(jī)數(shù)為一組,代表射擊4次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了 20組隨機(jī)數(shù):

7527 0293 7140 9857 0347 4373 8636 6947 1417 4698

0371 6233 2616 8045 6011 3661 9597 7424 7610 4281

根據(jù)以上數(shù)據(jù)估計(jì)該射擊運(yùn)動(dòng)員射擊4次至少擊中3次的概率為__________

【答案】

【解析】

根據(jù)數(shù)據(jù)統(tǒng)計(jì)擊中目標(biāo)的次數(shù),再用古典概型概率公式求解.

由數(shù)據(jù)得射擊4次至少擊中3次的次數(shù)有15,

所以射擊4次至少擊中3次的概率為.

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體的棱長為, 分別是的中點(diǎn),點(diǎn)在棱

上, ).

)三棱錐的體積分別為,當(dāng)為何值時(shí), 最大?最大值為多少?

)若平面,證明:平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,為橢圓短軸的一個(gè)端點(diǎn),為橢圓的左、右焦點(diǎn),線段的延長線與橢圓相交于點(diǎn),且.

1)求橢圓的方程;

2)如圖,點(diǎn)為橢圓上一動(dòng)點(diǎn)(非長軸端點(diǎn)),的延長線與橢圓交于點(diǎn),的延長線與橢圓交于點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若曲線在點(diǎn)處的切線與直線垂直,求實(shí)數(shù)的取值;

(Ⅱ)求函數(shù)的單調(diào)區(qū)間;

(Ⅲ)記.當(dāng)時(shí),函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用五種不同顏色給三棱臺(tái)的六個(gè)頂點(diǎn)染色,要求每個(gè)點(diǎn)染一種顏色,且每條棱的兩個(gè)端點(diǎn)染不同顏色.則不同的染色方法有___________種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某果園基地培育出一種特色水果,要在某一季節(jié)內(nèi)采摘一批這種水果銷往A市,每售出1噸這種水果獲利800元,未售出的水果每噸虧損400元,根據(jù)去年市場(chǎng)調(diào)研數(shù)據(jù)統(tǒng)計(jì),該季節(jié)A市對(duì)這種水果的市場(chǎng)需求量t(單位:噸,100≤t≤150)的頻率分布直方圖如圖所示.現(xiàn)該果園計(jì)劃采摘140噸這種水果運(yùn)往A市,經(jīng)銷這種水果的利潤Q(單位:元)

(1)求Q關(guān)t的函數(shù)表達(dá)式;

(2)視頻率為概率,求利潤Q的分布列及數(shù)學(xué)期望.(每組數(shù)據(jù)以區(qū)間的中點(diǎn)值為代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 )的左右焦點(diǎn)分別為, ,若橢圓上一點(diǎn)滿足,且橢圓過點(diǎn),過點(diǎn)的直線與橢圓交于兩點(diǎn) .

(1)求橢圓的方程;

(2)過點(diǎn)軸的垂線,交橢圓,求證: , , 三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的個(gè)數(shù)是(

1)平面與平面都相交,則這三個(gè)平面有2條或3條交線

2)如果平面外有兩點(diǎn)到平面的距離相等,則直線

3)直線不平行于平面,則不平行于內(nèi)任何一條直線

A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的二項(xiàng)展開式的各二項(xiàng)式系數(shù)的和與各項(xiàng)系數(shù)的和均為

1)求展開式中有理項(xiàng)的個(gè)數(shù);

2)求展開式中系數(shù)最大的項(xiàng).

查看答案和解析>>

同步練習(xí)冊(cè)答案