【題目】已知函數(shù)()
(1)討論函數(shù)的單調(diào)性;
(2)記是的導(dǎo)數(shù),若當(dāng),時(shí),恒成立,求實(shí)數(shù)的取值范圍.
【答案】(1)答案不唯一,具體見(jiàn)解析;(2).
【解析】
(1)求出,然后分、、三種情況討論即可;
(2)當(dāng)時(shí),,設(shè),則,設(shè),則,顯然在區(qū)間上單調(diào)遞增,且,然后分、兩種情況討論即可得到答案.
(1)由,得.
①當(dāng)時(shí),若,則;若,則,
所以恒成立,即時(shí),單調(diào)遞增.
②當(dāng)時(shí),若,則,單調(diào)遞增;
若,則,單調(diào)遞減.
若,則,單調(diào)遞增.
③當(dāng)時(shí),若,則,單調(diào)遞增;
若,則,單調(diào)遞減;
若,則,單調(diào)遞增.
(2)當(dāng)時(shí),.
設(shè),則.
設(shè),則,
顯然在區(qū)間上單調(diào)遞增,且.
①當(dāng)時(shí),因?yàn)?/span>在區(qū)間上恒成立,所以在區(qū)間上單調(diào)遞增.
又因?yàn)?/span>,所以當(dāng)時(shí),,即在區(qū)間上恒成立,從而在區(qū)間上單調(diào)遞增.
又因?yàn)?/span>,所以當(dāng)時(shí),,即,這時(shí),符合題意.
②當(dāng)時(shí),因?yàn)?/span>,所以,使得在區(qū)間上恒成立,這時(shí)在區(qū)間上單調(diào)遞減.
又因?yàn)?/span>,所以當(dāng)時(shí),,
即在區(qū)間上恒成立,從而在區(qū)間上單調(diào)遞減.
又因?yàn)?/span>,所以當(dāng)時(shí),,即,這時(shí),不符合題意.
綜上,實(shí)數(shù)的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),為的導(dǎo)函數(shù).
(1)證明:當(dāng)時(shí),;
(2)若是函數(shù)=在內(nèi)零點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著國(guó)內(nèi)疫情形勢(shì)好轉(zhuǎn),暫停的中國(guó)正在重啟,為了盡快提升經(jīng)濟(jì)、吸引顧客,哈西某商場(chǎng)舉辦購(gòu)物抽獎(jiǎng)活動(dòng),凡當(dāng)日購(gòu)物滿(mǎn)1000元的顧客,可參加抽獎(jiǎng),規(guī)則如下:盒中有大小質(zhì)地均相同5個(gè)球,其中2個(gè)紅球和3個(gè)白球,不放回地依次摸出2個(gè)球,若在第一次和第二次均摸到紅球則獲得特等獎(jiǎng),否則獲得紀(jì)念獎(jiǎng),則顧客獲得特等獎(jiǎng)的概率是_________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知長(zhǎng)方形ABCD中,AB=1,∠ABD=60°,現(xiàn)將長(zhǎng)方形ABCD沿著對(duì)角線(xiàn)BD折起,使平面ABD⊥平面BCD,則折后幾何圖形的外接球表面積為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:()經(jīng)過(guò)點(diǎn),且兩個(gè)焦點(diǎn),的坐標(biāo)依次為和.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè),是橢圓上的兩個(gè)動(dòng)點(diǎn),為坐標(biāo)原點(diǎn),直線(xiàn)的斜率為,直線(xiàn)的斜率為,若,證明:直線(xiàn)與以原點(diǎn)為圓心的定圓相切,并寫(xiě)出此定圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,與都是邊長(zhǎng)為2的等邊三角形,為等腰直角三角形,,.
(1)證明:;
(2)若為的中點(diǎn),求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,且以原點(diǎn)為圓心,以短軸長(zhǎng)為直徑的圓過(guò)點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若過(guò)點(diǎn)的直線(xiàn)與橢圓交于不同的兩點(diǎn),且與圓沒(méi)有公共點(diǎn),設(shè)為橢圓上一點(diǎn),滿(mǎn)足(為坐標(biāo)原點(diǎn)),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為了對(duì)某種商品進(jìn)行合理定價(jià),需了解該商品的月銷(xiāo)售量(單位:萬(wàn)件)與月銷(xiāo)售單價(jià)(單位:元/件)之間的關(guān)系,對(duì)近個(gè)月的月銷(xiāo)售量和月銷(xiāo)售單價(jià)數(shù)據(jù)進(jìn)行了統(tǒng)計(jì)分析,得到一組檢測(cè)數(shù)據(jù)如表所示:
月銷(xiāo)售單價(jià)(元/件) | ||||||
月銷(xiāo)售量(萬(wàn)件) |
(1)若用線(xiàn)性回歸模型擬合與之間的關(guān)系,現(xiàn)有甲、乙、丙三位實(shí)習(xí)員工求得回歸直線(xiàn)方程分別為:,和,其中有且僅有一位實(shí)習(xí)員工的計(jì)算結(jié)果是正確的.請(qǐng)結(jié)合統(tǒng)計(jì)學(xué)的相關(guān)知識(shí),判斷哪位實(shí)習(xí)員工的計(jì)算結(jié)果是正確的,并說(shuō)明理由;
(2)若用模型擬合與之間的關(guān)系,可得回歸方程為,經(jīng)計(jì)算該模型和(1)中正確的線(xiàn)性回歸模型的相關(guān)指數(shù)分別為和,請(qǐng)用說(shuō)明哪個(gè)回歸模型的擬合效果更好;
(3)已知該商品的月銷(xiāo)售額為(單位:萬(wàn)元),利用(2)中的結(jié)果回答問(wèn)題:當(dāng)月銷(xiāo)售單價(jià)為何值時(shí),商品的月銷(xiāo)售額預(yù)報(bào)值最大?(精確到)
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求曲線(xiàn)在處的切線(xiàn)方程;
(2)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(3)當(dāng)時(shí),記函數(shù)的導(dǎo)函數(shù)的兩個(gè)零點(diǎn)是和(),求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com