已知圓C:(x-2)2+(y+1)2=2,過原點(diǎn)的直線l與圓C相切,則所有切線的斜率之和為   
【答案】分析:根據(jù)題意得到直線l的斜率存在,設(shè)為k,表示出直線l方程,根據(jù)直線l與圓C相切,得到圓心到切線的距離等于圓的半徑,利用點(diǎn)到直線的距離公式列出關(guān)于k的方程,整理后利用韋達(dá)定理即可求出斜率之和.
解答:解:依題意得:切線l的斜率存在,設(shè)為k,
則直線l的方程為y=kx,
∵直線l與圓C相切,
∴圓心到切線的距離d=r,即=,
整理得:2k2+4k-1=0,
由韋達(dá)定理得:k1+k2=-2,
則所有切線的斜率之和為-2.
故答案為:-2
點(diǎn)評(píng):此題考查了直線與圓的位置關(guān)系,涉及的知識(shí)有:直線的點(diǎn)斜式方程,點(diǎn)到直線的距離公式,以及韋達(dá)定理,當(dāng)直線與圓相切時(shí),圓心到切線的距離等于圓的半徑,熟練掌握此性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-2)2+(y-4)2=4,直線l1過原點(diǎn)O(0,0).
(1)若l1與圓C相切,求l1的方程;
(2)若l1與圓C相交于不同兩點(diǎn)P、Q,線段PQ的中點(diǎn)為M,又l1與l2:x+2y+1=0的交點(diǎn)為N,求證:OM•ON為定值;
(3)求問題(2)中線段MN長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x+2)2+y2=24,定點(diǎn)A(2,0),M為圓C上一動(dòng)點(diǎn),點(diǎn)P在AM上,點(diǎn)N在CM上(C為圓心),且滿足
.
AM
= 2
.
AP
,
.
NP
-
.
AM
=0
,設(shè)點(diǎn)N的軌跡為曲線E.
(1)求曲線E的方程;
(2)過點(diǎn)B(m,0)作傾斜角為
5
6
π
的直線l交曲線E于C、D兩點(diǎn).若點(diǎn)Q(1,0)恰在以線段CD為直徑的圓的內(nèi)部,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-2)2+y2=1,D是y軸上的動(dòng)點(diǎn),直線DA、DB分別切圓C于A、B兩點(diǎn).
(1)如果|AB|=
4
2
3
,求直線CD的方程;
(2)求動(dòng)弦AB的中點(diǎn)的軌跡方程E;
(3)直線x-y+m=0(m為參數(shù))與方程E交于P、Q兩個(gè)不同的點(diǎn),O為原點(diǎn),設(shè)直線OP、OQ的斜率分別為KOP,KOQ,試將KOP•KOQ表示成m的函數(shù),并求其最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-2)2+(y-1)2=2,過原點(diǎn)的直線l與圓C相切,則所有過原點(diǎn)的切線的斜率之和為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-2)2+(y-1)2=25,過點(diǎn)M(-2,4)的圓C的切線l1與直線l2:ax+3y+2a=0平行,則l1與l2間的距離是( 。
A、
8
5
B、
2
5
C、
28
5
D、
12
5

查看答案和解析>>

同步練習(xí)冊(cè)答案