已知函數(shù),x∈R.
(Ⅰ)求函數(shù)f(x)的最大值和最小值;
(Ⅱ)如圖,函數(shù)f(x)在[-1,1]上的圖象與x軸的交點(diǎn)從左到右分別為M、N,圖象的最高點(diǎn)為P,求的夾角的余弦.

【答案】分析:(Ⅰ)利用兩角和的正弦函數(shù)化簡(jiǎn)函數(shù)的表達(dá)式,然后求函數(shù)f(x)的最大值和最小值;
(Ⅱ)解法一:通過(guò)函數(shù)為0,求出M,N的坐標(biāo),確定P的位置,求出,求出的夾角的余弦.
      解法二:過(guò)點(diǎn)P作PA⊥x軸于A,則|PA|=1,求出|PM|,|PN|在三角形中利用余弦定理求出的夾角的余弦.
      解法三:過(guò)點(diǎn)P作PA⊥x軸于A,則|PA|=1,在Rt△PAM中,求出,通過(guò)二倍角公式求出的夾角的余弦.
解答:解:(Ⅰ)∵
=(2分)
∵x∈R∴,
∴函數(shù)f(x)的最大值和最小值分別為1,-1.(4分)
(Ⅱ)解法1:令,
∵x∈[-1,1]∴,(6分)
,且x∈[-1,1]得,(8分)
,(10分)
=.(12分)
解法2:過(guò)點(diǎn)P作PA⊥x軸于A,則|PA|=1,
由三角函數(shù)的性質(zhì)知,(6分),(8分)
由余弦定理得(10分)
=.(12分)
解法3:過(guò)點(diǎn)P作PA⊥x軸于A,則|PA|=1,
由三角函數(shù)的性質(zhì)知,(6分)(8分)
在Rt△PAM中,(10分)
∵PA平分∠MPN∴cos∠MPN=cos2∠MPA=2cos2∠MPA-1=.(12分)
點(diǎn)評(píng):本題是中檔題,考查三角函數(shù)的化簡(jiǎn)求值,向量的夾角的求法,可以通過(guò)向量的數(shù)量積解決,也可以通過(guò)三角形解決,考查計(jì)算能力,?碱}型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江西省宜春市上高二中高一(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)(x∈R).若,.求cos2x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省江門市新會(huì)一中高三(上)第四次檢測(cè)數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù),x∈R,且
(1)求A的值;
(2)設(shè),,,求cos(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年貴州省遵義市遵義四中高一(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)(x∈R).
(1)求函數(shù)f(x)的最小正周期;
(2)求使函數(shù)f(x)取得最大值的x的集合;
(3)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省汕尾市陸豐東海中學(xué)高二(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù),x∈R
(1)求函數(shù)f(x)的最大值及對(duì)應(yīng)的x的取值集合;
(2)在給定的坐標(biāo)系中,畫(huà)出函數(shù)y=f(x)在[0,π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年廣東省高考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù),x∈R,且
(1)求A的值;
(2)設(shè),,,求cos(α+β)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案