【題目】已知四棱錐的底面是直角梯形,,,且,,為的中點.
求證:;
求直線與平面所成角的正弦值.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)討論函數(shù)的單調性;
(2)是否存在實數(shù),使得“對任意恒成立”?若存在,求出的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題:
①對立事件一定是互斥事件;②若A,B為兩個隨機事件,則P(A∪B)=P(A)+P(B);③若事件A,B,C彼此互斥,則P(A)+P(B)+P(C)=1;④若事件A,B滿足P(A)+P(B)=1,則A與B是對立事件.
其中正確命題的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】長春市統(tǒng)計局對某公司月收入在元內(nèi)的職工進行一次統(tǒng)計,并根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖(每個分組包括左端點,不包括右端點,如第一組表示職工月收入在區(qū)間內(nèi),單位:元).
(Ⅰ)請估計該公司的職工月收入在內(nèi)的概率;
(Ⅱ)根據(jù)頻率分布直方圖估計樣本數(shù)據(jù)的中位數(shù)和平均數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如今我們的互聯(lián)網(wǎng)生活日益豐富,除了可以很方便地網(wǎng)購,網(wǎng)絡外賣也開始成為不少人日常生活中重要的一部分,其中大學生更是頻頻使用網(wǎng)絡外賣服務.市教育主管部門為掌握網(wǎng)絡外賣在該市各大學的發(fā)展情況,在某月從該市大學生中隨機調查了人,并將這人在本月的網(wǎng)絡外賣的消費金額制成如下頻數(shù)分布表(已知每人每月網(wǎng)絡外賣消費金額不超過元):
消費金額(單位:百元) | ||||||
頻數(shù) |
由頻數(shù)分布表可以認為,該市大學生網(wǎng)絡外賣消費金額(單位:元)近似地服從正態(tài)分布,其中近似為樣本平均數(shù)(每組數(shù)據(jù)取區(qū)間的中點值,).現(xiàn)從該市任取名大學生,記其中網(wǎng)絡外賣消費金額恰在元至元之間的人數(shù)為,求的數(shù)學期望;
市某大學后勤部為鼓勵大學生在食堂消費,特地給參與本次問卷調查的大學生每人發(fā)放價值元的飯卡,并推出一檔“勇闖關,送大獎”的活動.規(guī)則是:在某張方格圖上標有第格、第格、第格、…、第格共個方格.棋子開始在第格,然后擲一枚均勻的硬幣(已知硬幣出現(xiàn)正、反面的概率都是,其中),若擲出正面,將棋子向前移動一格(從到),若擲出反面,則將棋子向前移動兩格(從到).重復多次,若這枚棋子最終停在第格,則認為“闖關成功”,并贈送元充值飯卡;若這枚棋子最終停在第格,則認為“闖關失敗”,不再獲得其他獎勵,活動結束.
①設棋子移到第格的概率為,求證:當時,是等比數(shù)列;
②若某大學生參與這檔“闖關游戲”,試比較該大學生闖關成功與闖關失敗的概率大小,并說明理由.
參考數(shù)據(jù):若隨機變量服從正態(tài)分布,則,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線(為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,直線的極坐標方程為:.
(1)求直線和曲線的直角坐標方程;
(2),直線和曲線交于、兩點,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com