如圖,在長(zhǎng)方體中,點(diǎn)在棱上.
(1)求異面直線與所成的角;
(2)若二面角的大小為,求點(diǎn)到面的距離.
(1)對(duì)于異面直線的所成的角,一般采用平移法,平移到一個(gè)三角形中,借助于余弦定理求解。
(2)
【解析】
試題分析:解法一:(1)連結(jié).由是正方形知.
∵平面,
∴是在平面內(nèi)的射影.
根據(jù)三垂線定理得,
則異面直線與所成的角為. 5分
(2)作,垂足為,連結(jié),則.
所以為二面角的平面角,.于是,
易得,所以,又,所以.
設(shè)點(diǎn)到平面的距離為,則由于即,
因此有,即,∴.…………12分
解法二:如圖,分別以為軸,軸,軸,建立空間直角坐標(biāo)系.
(1)由,得,
設(shè),又,則.
∵∴,則異面直線與所成的角為. 5分
(2)為面的法向量,設(shè)為面的法向量,則
,
∴. ①
由,得,則,即,∴
②由①、②,可取,又,
所以點(diǎn)到平面的距離. 12分
考點(diǎn):異面直線所成的角,點(diǎn)到面的距離
點(diǎn)評(píng):考查了異面直線所成的角以及點(diǎn)到面的距離的求解,屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
如圖,在長(zhǎng)方體中,點(diǎn)分別在上,且,.
(1)求證:平面;
(2)若規(guī)定兩個(gè)平面所成的角是這兩個(gè)平面所組成的二面角中的銳角(或直角),則在空間有定理:若兩條直線分別垂直于兩個(gè)平面,則這兩條直線所成的角與這兩個(gè)平面所成角相等,試根據(jù)上述定理,在時(shí),求平面與平面所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,在長(zhǎng)方體中,點(diǎn)在棱的延長(zhǎng)線上,
且.
(Ⅰ) 求證://平面 ;(Ⅱ) 求證:平面平面;
(Ⅲ)求四面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,在長(zhǎng)方體中,點(diǎn)在線段上.
(Ⅰ)求異面直線與所成的角;
(Ⅱ)若二面角的大小為,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖南省高三第一次質(zhì)檢文科數(shù)學(xué)卷 題型:解答題
(12分)如圖,在長(zhǎng)方體中,點(diǎn)在棱的延長(zhǎng)線上,且.
(Ⅰ)求證://平面 ;
(Ⅱ)求證:平面平面;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:福建省2010屆高三高考模擬試卷文科數(shù)學(xué) 題型:解答題
(本小題12分)如圖,在長(zhǎng)方體中,點(diǎn)在棱的延長(zhǎng)線上,且.
(1)求證:∥平面;
(2)求證:平面平面;
(3)求四面體的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com