【題目】風(fēng)景秀美的寶湖畔有四棵高大的銀杏樹,記作A,B,P,Q,湖岸部分地方圍有鐵絲網(wǎng)不能靠近.欲測量P,Q兩棵樹和A,P兩棵樹之間的距離,現(xiàn)可測得A,B兩點(diǎn)間的距離為100 m,∠PAB=75°,∠QAB=45°,∠PBA=60°,∠QBA=90°,如圖所示.則P,Q兩棵樹和A,P兩棵樹之間的距離各為多少?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個命題
已知P為橢圓上任意一點(diǎn),,是橢圓的兩個焦點(diǎn),則的范圍是;
已知M是雙曲線上任意一點(diǎn),是雙曲線的右焦點(diǎn),則;
已知直線l過拋物線C:的焦點(diǎn)F,且l與C交于,兩點(diǎn),則;
橢圓具有這樣的光學(xué)性質(zhì):從橢圓的一個焦點(diǎn)出發(fā)的光線,經(jīng)橢圓反射后,反射光線經(jīng)過橢圓的另一個焦點(diǎn),今有一個水平放置的橢圓形臺球盤,點(diǎn),是它的焦點(diǎn),長軸長為2a,焦距為2c,若靜放在點(diǎn)的小球小球的半徑忽略不計從點(diǎn)沿直線出發(fā)則經(jīng)橢圓壁反射后第一次回到點(diǎn)時,小球經(jīng)過的路程恰好是4a.
其中正確命題的序號為______請將所有正確命題的序號都填上
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前項(xiàng)和為,且(),設(shè)(),數(shù)列的前項(xiàng)和.
(1)求、、的值;
(2)利用“歸納—猜想—證明”求出的通項(xiàng)公式;
(3)求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn),是以為底邊的等腰三角形,點(diǎn)在直線:上.
(1)求邊上的高所在直線的方程;
(2)求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的離心率,左頂點(diǎn)到直線的距離,為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓相交于兩點(diǎn),若以為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),證明:點(diǎn)到直線的距離為定值;
(III)在(Ⅱ)的條件下,試求的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若關(guān)于的方程在區(qū)間上有解,求實(shí)數(shù)的取值范圍;
(2)若對恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)統(tǒng)計,2017年國慶中秋假日期間,黔東南州共接待游客590.23萬人次,實(shí)現(xiàn)旅游收入48.67億元,同比分別增長44.57%、55.22%.旅游公司規(guī)定:若公司導(dǎo)游接待旅客,旅游年總收入不低于40(單位:百萬元),則稱為優(yōu)秀導(dǎo)游.經(jīng)驗(yàn)表明,如果公司的優(yōu)秀導(dǎo)游率越高,則該公司的影響度越高.已知甲、乙兩家旅游公司各有導(dǎo)游100名,統(tǒng)計他們一年內(nèi)旅游總收入,分別得到甲公司的頻率分布直方圖和乙公司的頻數(shù)分布表如下:
分組 | |||||
頻數(shù) | 18 | 49 | 24 | 5 |
(Ⅰ)求的值,并比較甲、乙兩家旅游公司,哪家的影響度高?
(Ⅱ)若導(dǎo)游的獎金(單位:萬元),與其一年內(nèi)旅游總收入(單位:百萬元)之間的關(guān)系為,求甲公司導(dǎo)游的年平均獎金;
(Ⅲ)從甲、乙兩家公司旅游收入在的總?cè)藬?shù)中,用分層抽樣的方法隨機(jī)抽取6人進(jìn)行表彰,其中有兩名導(dǎo)游代表旅游行業(yè)去參加座談,求參加座談的導(dǎo)游中有乙公司導(dǎo)游的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三棱錐及其側(cè)視圖、俯視圖如圖所示.設(shè), 分別為線段, 的中點(diǎn), 為線段上的點(diǎn),且.
(1)證明: 為線段的中點(diǎn);
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=4cosxsin(x)+a的最大值為2.
(1)求實(shí)數(shù)a的值;
(2)在給定的直角坐標(biāo)系上作出函數(shù)f(x)在[0,π]上的圖象:
(3)求函數(shù)f(x)在[,]上的零點(diǎn),
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com