【題目】大數(shù)據(jù)時(shí)代對(duì)于現(xiàn)代人的數(shù)據(jù)分析能力要求越來越高,數(shù)據(jù)擬合是一種把現(xiàn)有數(shù)據(jù)通過數(shù)學(xué)方法來代入某條數(shù)式的表示方式,比如,,2,,n是平面直角坐標(biāo)系上的一系列點(diǎn),用函數(shù)來擬合該組數(shù)據(jù),盡可能使得函數(shù)圖象與點(diǎn)列比較接近.其中一種描述接近程度的指標(biāo)是函數(shù)的擬合誤差,擬合誤差越小越好,定義函數(shù)的擬合誤差為:.已知平面直角坐標(biāo)系上5個(gè)點(diǎn)的坐標(biāo)數(shù)據(jù)如表:
x | 1 | 3 | 5 | 7 | 9 |
y | 12 | 4 | 12 |
若用一次函數(shù)來擬合上述表格中的數(shù)據(jù),求該函數(shù)的擬合誤差的最小值,并求出此時(shí)的函數(shù)解析式;
若用二次函數(shù)來擬合題干表格中的數(shù)據(jù),求;
請(qǐng)比較第問中的和第問中的,用哪一個(gè)函數(shù)擬合題目中給出的數(shù)據(jù)更好?請(qǐng)至少寫出三條理由
【答案】(1)函數(shù)的擬合誤差取最小值為,此時(shí)(2),更好,詳見解析
【解析】
)把圖表中的數(shù)據(jù)代入擬合誤差,得到關(guān)于m的二次函數(shù),利用二次函數(shù)求最值,進(jìn)一步得到函數(shù)解析式;
在擬合誤差中以替換,求得;
通過數(shù)據(jù)分析可知,更好,由表中數(shù)據(jù)結(jié)合圖象寫出理由.
解:根據(jù)題意得:
,
則當(dāng)時(shí),取最小值為,此時(shí);
若用二次函數(shù)來擬合題干表格中的數(shù)據(jù),
則;
更好.
理由如下:
;
圖象上有更多的點(diǎn)與原點(diǎn)列重合三個(gè);
的圖象更能反映原來點(diǎn)列的對(duì)稱性.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義“正對(duì)數(shù)”:,現(xiàn)有四個(gè)命題:
①若,,則;
②若,,則;
③若,,則;
④若,,則.
則所有真命題的序號(hào)為
A.①②③B.①②④C.③④D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯(cuò)誤的是( )
A.在線性回歸分析中,相關(guān)系數(shù)r的值越大,變量間的相關(guān)性越強(qiáng)
B.自變量取值一定時(shí),因變量的取值帶有一定隨機(jī)性的兩個(gè)變量之間的關(guān)系叫做相關(guān)關(guān)系
C.在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高
D.在問歸分析中,為0.98的模型比為0.80的模型擬合的效果好
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某中學(xué)甲、乙兩班各隨機(jī)抽取 名同學(xué),測(cè)量他們的身高(單位: ),所得數(shù)據(jù)用莖葉圖表示如下,由此可估計(jì)甲、乙兩班同學(xué)的身高情況,則下列結(jié)論正確的是( )
A. 甲班同學(xué)身高的方差較大 B. 甲班同學(xué)身高的平均值較大
C. 甲班同學(xué)身高的中位數(shù)較大 D. 甲班同學(xué)身高在 以上的人數(shù)較多
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】5張獎(jiǎng)券中有2張是中獎(jiǎng)的,先由甲抽1張,然后由乙抽1張,抽后不放回,求:
(1)甲中獎(jiǎng)的概率;
(2)甲、乙都中獎(jiǎng)的概率;
(3)只有乙中獎(jiǎng)的概率;
(4)乙中獎(jiǎng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()的焦距為4,其短軸的兩個(gè)端點(diǎn)與長(zhǎng)軸的一個(gè)端點(diǎn)構(gòu)成正三角形.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)為橢圓的左焦點(diǎn),直線,為橢圓上任意一點(diǎn),證明:點(diǎn)到的距離是點(diǎn)到距離的倍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正四棱錐的全面積為2,記正四棱錐的高為h.
(1)用h表示底面邊長(zhǎng),并求正四棱錐體積V的最大值;
(2)當(dāng)V取最大值時(shí),求異面直線AB和PD所成角的大。結(jié)果用反三角函數(shù)值表示
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖.
(1)求直方圖中的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com