已知等差數(shù)列{an}滿足a1=-4,a4+a6=16,則它的前10項(xiàng)和S10=( 。
分析:由等差數(shù)列{an}中,a1=-4,a4+a6=16易構(gòu)造一個(gè)關(guān)于首項(xiàng)a1與公差d的方程,解方程求出基本項(xiàng)首項(xiàng)a1與公差d后,代入等差數(shù)列前n項(xiàng)和公式,即可得到答案.
解答:解:設(shè)等差數(shù)列{an}的公差為d,
∵a1=-4,a4+a6=a1+3d+a1+5d=2a1+8d=16
解得d=3,
∴S10=10a1+
10×9
2
d
=10×(-4)+5×9×3=95
故選B.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是等差數(shù)列的前n項(xiàng)和,根據(jù)已知條件構(gòu)造關(guān)于基本量的方程,解方程求出基本量是解決問題的基本方法,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn=an3n-1,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項(xiàng)公式;
(2)若bn=an+q an(q>0),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項(xiàng)公式;     
(2)求數(shù)列{|an|}的前n項(xiàng)和;
(3)求數(shù)列{
an2n-1
}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知等差數(shù)列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若{an}為遞增數(shù)列,請(qǐng)根據(jù)如圖的程序框圖,求輸出框中S的值(要求寫出解答過程).

查看答案和解析>>

同步練習(xí)冊(cè)答案