在△ABC中,2sin2=sinA,sin(B-C)=2cosBsinC,則=____________.

 

【解析】2sin2=sinA?1-cosA=sinA?sin=,

又0<A<π,所以<A+<,

所以A+=,所以A=.

再由余弦定理,得a2=b2+c2+bc ①

將sin(B-C)=2cosBsinC展開,

得sinBcosC=3cosBsinC,

所以將其角化邊,得b·

=3··c,即2b2-2c2=a2 ②

將①代入②,得b2-3c2-bc=0,

左右兩邊同除以bc,得-3×-1=0,、

解③得==(舍),

所以==.

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2014年高考數(shù)學人教版評估檢測 第八章 平面解析幾何(解析版) 題型:選擇題

(2014·咸寧模擬)雙曲線-=1的漸近線與圓x2+(y-2)2=1相切,則雙曲線離心率為(  )

A. B. C.2 D.3

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學人教版評估檢測 第二章 函數(shù)、導數(shù)及其應(yīng)用(解析版) 題型:選擇題

(2014·大連模擬)已知f(x)=alnx+x2,若對任意兩個不等的正實數(shù)x1,x2都有>0成立,則實數(shù)a的取值范圍是(  )

A.[0,+∞) B.(0,+∞)

C.(0,1) D.(0,1]

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學人教版評估檢測 第九章計數(shù)原理與概率隨機變量及其分布(解析版) 題型:選擇題

(2014·廈門模擬)樣本中共有五個個體,其值分別為a,0,1,2,3.若該樣本的平均值為1,則樣本方差為(  )

A. B. C. D.2

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學人教版評估檢測 第三章 三角函數(shù)、解三角形(解析版) 題型:解答題

(2013·重慶高考)在△ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,且a2=b2+c2+ab.

(1)求A.

(2)設(shè)a=,S為△ABC的面積,求S+3cosBcosC的最大值,并指出此時B的值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學人教版評估檢測 第三章 三角函數(shù)、解三角形(解析版) 題型:填空題

(2014·東城模擬)在△ABC中,a,b,c分別為角A,B,C所對的邊.已知角A為銳角,且b=3asinB,則tanA=__________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學人教版評估檢測 第三章 三角函數(shù)、解三角形(解析版) 題型:選擇題

已知函數(shù)y=cos(ωx+φ)(ω>0,|φ|<π)的部分圖象如圖所示,則(  )

A.ω=1,φ=

B.ω=1,φ=-

C.ω=2,φ=

D.ω=2,φ=-

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學人教版評估檢測 第七章 立體幾何(解析版) 題型:選擇題

在棱長為1的正方體AC1中,E為AB的中點,點P為側(cè)面BB1C1C內(nèi)一動點(含邊界),若動點P始終滿足PE⊥BD1,則動點P的軌跡的長度為( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 解析幾何(解析版) 題型:選擇題

已知橢圓C的方程為(m>0),如果直線y=x與橢圓的一個交點M在x軸上的射影恰好是橢圓的右焦點F,則m的值為(  )

A.2 B.2

C.8 D.2

 

查看答案和解析>>

同步練習冊答案