17.一個底面直徑為32厘米的圓柱形水桶中放入一個鐵球,球全部沒入水中后,水面升高9厘米,求此球的表面積.

分析 根據(jù)圓柱水面升高的高度,求出水的體積,就是球的體積,然后求出球的半徑,進(jìn)而可得答案.

解答 解:由已知可得:圓柱的半徑r=16,
水面上升的高度h=9,
則球的體積等于上升水的體積,
即V=Sh=πr2h=$\frac{4}{3}$πR3
解得:R=12(cm),
故球的表面積S=4πR2=576πcm2

點評 本題考查圓柱的體積與球的體積的關(guān)系,考查計算能力,根據(jù)已知求出圓半徑,是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.求值:cos75°cos15°-sin75°sin15°=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若(4k+1)•180°<α<(4k+1)•180°+60°(k∈Z),則α所在象限為( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在直角坐標(biāo)系中,直線3x-$\sqrt{3}$y+1=0的傾斜角是( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=2cos(x+$\frac{5π}{12}$)sin(x+$\frac{π}{4}$)+$\frac{1}{2}$,x∈R.
(1)求f(x)的單調(diào)增區(qū)間;
(2)已知△ABC內(nèi)角A、B、C的對邊分別為a、b、c,且c=3,f(C)=-$\frac{\sqrt{3}}{2}$,若向量$\overrightarrow{m}$=(1,sinA)與$\overrightarrow{n}$=(2,sinB)共線,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在同一個平面直角坐標(biāo)系中,函數(shù)y=sin($\frac{x}{2}$+$\frac{3π}{2}$)(x∈[0,2π])的圖象和直線y=$\frac{1}{2}$的交點個數(shù)是(  )
A.0B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合A={x|x2-3x-1=0},集合B={x|x2(1+x2)=ax+b(a,b∈R)},若A⊆B,則a+b=( 。
A.47B.25C.-25D.-47

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知△ABC的內(nèi)角A、B、C所對的邊分別為a,b,c,ac=6且(2a-c)cosB=bcosC.
(1)求△ABC的面積S;
(2)若b=$\sqrt{7}$,求sinA+sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知f(x)=$\frac{1+lnx}{x-1}$,g(x)=$\frac{k}{x}$,且k為大于1的正整數(shù).
(1)求f(x)在(0,1)上的單調(diào)區(qū)間
(2)若對任意c>1均存在a,b滿足0<a<b<c,使得f(c)=f(a)=g(b),求k的最大值.

查看答案和解析>>

同步練習(xí)冊答案