【題目】在四棱錐中,平面ABCD,是正三角形,ACBD的交點為M,又,點NCD中點.

1)求證:平面PAD

2)求點M到平面PBC的距離.

【答案】(1)證明見解析;(2)

【解析】

1)推導(dǎo)出ABD≌△BCD,從而MNAD,由此能證明MN∥平面PAD
2)設(shè)M到平面PBC的距離為h,由VM-PBC=VP-BMC,能求出點M到平面PBC的距離.

1是正三角形,所以,又

BD所在直線為線段AC的垂直平分線,

所以MAC的中點,

又點NCD中點,所以

平面PAD,平面PAD,

所以平面PAD;

2)解:設(shè)M到平面PBC的距離為h,在中,,

所以

中,,所以,

中,,,所以.

.即,

解得

所以點M到平面PBC的距離為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C)的兩焦點與短軸兩端點圍成面積為12的正方形.

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)我們稱圓心在橢圓上運動,半徑為的圓是橢圓的“衛(wèi)星圓”.過原點O作橢圓C的“衛(wèi)星圓”的兩條切線,分別交橢圓CA、B兩點,若直線、的斜率為、,當(dāng)時,求此時“衛(wèi)星圓”的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是等差數(shù)列,公差為,前項和為.

1)設(shè),求的最大值.

2)設(shè),,數(shù)列的前項和為,且對任意的,都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四面體中,分別是線段的中點,,,,直線與平面所成的角等于

(Ⅰ)證明:平面平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(Ⅰ)求證:當(dāng)時,;

(Ⅱ)存在,使得成立,求a的取值范圍;

(Ⅲ)若恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面是以為中心的菱形,底面上一點,且

1)求的長;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若在定義域上不單調(diào),求的取值范圍;

(2)設(shè)分別是的極大值和極小值,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體中,平面,垂足為H,給出下面結(jié)論:

①直線與該正方體各棱所成角相等;

②直線與該正方體各面所成角相等;

③過直線的平面截該正方體所得截面為平行四邊形;

④垂直于直線的平面截該正方體,所得截面可能為五邊形,

其中正確結(jié)論的序號為( 。

A. ①③ B. ②④ C. ①②④ D. ①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點是橢圓的右焦點,點,分別是軸,軸上的動點,且滿足.若點滿足為坐標(biāo)原點).

(Ⅰ)求點的軌跡的方程;

(Ⅱ)設(shè)過點任作一直線與點的軌跡交于,兩點,直線,與直線分別交于點,試判斷以線段為直徑的圓是否經(jīng)過點?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案