6.設(shè)?x?表示不小于實(shí)數(shù)x的最小整數(shù),如?2.6?=3,?-3.5?=-3.已知函數(shù)f(x)=?x?2-2?x?,若函數(shù)F(x)=f(x)-k(x-2)+2在(-1,4]上有2個(gè)零點(diǎn),則k的取值范圍是( 。
A.$[{-\frac{5}{2},-1})∪[2,5)$B.$[{-1,-\frac{2}{3}})∪[5,10)$C.$({-\frac{4}{3},-1}]∪[5,10)$D.$[{-\frac{4}{3},-1}]∪[5,10)$

分析 根據(jù)[x]的定義,分別作出函數(shù)y=f(x)和y=k(x-2)-2的圖象,利用數(shù)形結(jié)合即可得到結(jié)論.

解答 解:令F(x)=0得f(x)=k(x-2)-2,
作出函數(shù)y=f(x)和y=k(x-2)-2的圖象如下圖所示:

若函數(shù)F(x)=f(x)-k(x-2)+2在(-1,4]上有2個(gè)零點(diǎn),
則函數(shù)f(x)和g(x)=k(x-2)-2的圖象在(-1,4]上有2個(gè)交點(diǎn),
經(jīng)計(jì)算可得kPA=5,kPB=10,kPO=-1,kPC=-$\frac{2}{3}$,
∴k的范圍是[-1,-$\frac{2}{3}$)∪[5,10).
故選:B.

點(diǎn)評(píng) 本題考查了對(duì)新定義的理解,函數(shù)零點(diǎn)的個(gè)數(shù)與函數(shù)圖象的關(guān)系,數(shù)形結(jié)合解題思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在△ABC中,D、E分別是AB,AC的中點(diǎn),M是直線DE上的動(dòng)點(diǎn),若△ABC的面積為1,則$\overrightarrow{MB}$•$\overrightarrow{MC}$+$\overrightarrow{BC}$2的最小值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{1}{3}$x3-x2+x.
(1)求函數(shù)f(x)在[-1,2]上的最大值和最小值;
(2)若函數(shù)g(x)=f(x)-4x,x∈[-3,2],求g(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知偶函數(shù)f(x)在區(qū)間(-∞,0]內(nèi)單調(diào)遞減,a=f(log23),b=f(log45),$c=f({2^{\frac{1}{2}}})$,則a,b,c滿足(  )
A.a<b<cB.c<a<bC.b<a<cD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在△ABC中,AB=2,BC=$\sqrt{10}$,cosA=$\frac{1}{4}$,則AB邊上的高等于(  )
A.$\frac{3\sqrt{15}}{4}$B.$\frac{3}{4}$C.$\frac{3\sqrt{15}}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.直線x=a分別與曲線y=2(x+1),y=x+lnx交于A、B兩點(diǎn),則|AB|的最小值為(  )
A.3B.2C.$\frac{3\sqrt{2}}{4}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.(x2-3x+2)5二項(xiàng)展開式中x2的系數(shù)為800.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.給出如下四個(gè)命題:
①已知m,n表示兩條不同的直線,α,β表示兩個(gè)不同的平面,并且m⊥α,n?β,則“α⊥β”是“m∥n”的必要不充分條件;
②對(duì)于?x∈(0,+∞),log2x<log3x成立;
③“若am2<bm2,則a<b”的逆命題為真命題;
④把函數(shù)$y=3sin(2x+\frac{π}{3})$的圖象向右平移$\frac{π}{6}$個(gè)單位,可得到y(tǒng)=3sin2x的圖象.
其中所有正確命題的序號(hào)是①④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在等差數(shù)列{an}中,a2,a3,a6成等比數(shù)列,則此等比數(shù)的公比q的值為3或1.

查看答案和解析>>

同步練習(xí)冊(cè)答案