已知關(guān)于x的方程-x2+2x=|a-1|在x∈(
12
,2]
上恒有實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是
[0,2]
[0,2]
分析:由題意可得,函數(shù)f(x)=-x2+2x的圖象和直線y=|a-1|的圖象在x∈(
1
2
,2]
上恒有交點(diǎn),數(shù)形結(jié)合可得|a-1|≤1,從而求得a的范圍.
解答:解:由于函數(shù)f(x)=-x2+2x=-(x-1)2+1≤1,故函數(shù)f(x)的值域?yàn)椋?∞,1].
根據(jù)已知關(guān)于x的方程-x2+2x=|a-1|在x∈(
1
2
,2]
上恒有實(shí)數(shù)根,
的圖象和直線y=|a-1|的圖象在x∈(
1
2
,2]
上恒有交點(diǎn),如圖所示:
故有|a-1|≤1,即-1≤a-1≤1,解得 0≤a≤2,
故答案為[0,2].
點(diǎn)評:本題主要考查函數(shù)的零點(diǎn)與方程的根的關(guān)系,體現(xiàn)了數(shù)形結(jié)合、轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

2、已知關(guān)于x的方程|x|=ax+1有一個(gè)負(fù)根,但沒有正根,則實(shí)數(shù)a的取值范圍是
a≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

12、已知關(guān)于x的方程|x|-ax-1=0有一正一負(fù)根,則實(shí)數(shù)a的取值范圍是
(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程
|x|x+3
=kx3
有三個(gè)不同的實(shí)數(shù)解,則實(shí)數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程|x|=ax+1有一個(gè)負(fù)根而且沒有正根,則實(shí)數(shù)a的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程(a+2)x2-2ax+a=0有兩個(gè)不相等的實(shí)數(shù)根x1和x2,并且拋物線y=x2-(2a+1)x+2a-5于x軸的兩個(gè)交點(diǎn)分別位于點(diǎn)(2,0)的兩旁.
(1)求實(shí)數(shù)a的取值范圍;
(2)當(dāng)|x1|+|x2|=2
2
時(shí),求a的值.

查看答案和解析>>

同步練習(xí)冊答案