求不等式>a18-2x(a>0且a≠1)中的x的取值范圍.

答案:
解析:

  解:對于,

  當(dāng)時,有3x2+10>18-2x,

  解得x<-2;or;x>4/3;3分

  當(dāng)時,有3x2+10<18-2x,

  解得-2<x<4/3;6分

  所以,當(dāng)時,x的取值范圍為{x︱x<-2orx>/3};

  當(dāng)時,x的取值范圍為{x︱-2<x<4/3}.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}對于任意p,q∈N*,都有ap+aq=ap+q,且a1=2.
(1)求an的表達(dá)式;
(2)將數(shù)列{an}依次按1項、2項、3項、4項循環(huán)地分為(a1),(a2,a3),(a4,a5,a6),(a7,a8,a9,a10);(a11),(a12,a13),(a14,a15,a16),(a17,a18,a19,a20);(a21),…,分別計算各個括號內(nèi)各數(shù)之和,設(shè)由這些和按原來括號的前后順序構(gòu)成的數(shù)列為{bn},求b5+b100的值;
(3)設(shè)An為數(shù)列{
an-1
an
}
的前n項積,是否存在實數(shù)a,使得不等式An
an+1
<a-
3
2a
對一切n∈N*都成立?若存在,求出a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•宜昌模擬)設(shè)數(shù)列{an}的前n項和為Sn,對一切n∈N*,點(n,
Sn
n
)
都在函數(shù)f(x)=x+1的圖象上.
(1)求數(shù)列{an}的通項公式;
(2)將數(shù)列{an}依次按1項、2項、3項、4項循環(huán)地分為(a1),(a2,a3),(a4,a5,a6),(a7,a8,a9,a10);(a11),(a12,a13),(a14,a15,a16),(a17,a18,a19,a20);(a21),…,分別計算各個括號內(nèi)各數(shù)之和,設(shè)由這些和按原來括號的前后順序構(gòu)成的數(shù)列為{bn},b5+b100的值;
(3)設(shè)An為數(shù)列{
an-1
an
}
的前n項積,若不等式An
an+1
<f(a-1)-
3
2a
對一切n∈N*都成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,對一切n∈N*,點(n,
Sn
n
)都在函數(shù)f(x)=x+
an
2x
的圖象上.
(1)計算a1,a2,a3,并歸納出數(shù)列{an}的通項公式;
(2)將數(shù)列{an}依次按1項、2項、3項、4項循環(huán)地分為(a1),(a2,a3),(a4,a5,a6),(a7,a8,a9,a10);(a11),(a12,a13),(a14,a15,a16),(a17,a18,a19,a20);(a21)…,分別計算各個括號內(nèi)各數(shù)之和,設(shè)由這些和按原來括號的前后順序構(gòu)成的數(shù)列為{bn},求b5+b100的值;
(3)設(shè)An為數(shù)列{
an-1
an
}
的前n項積,若不等式An
an+1
<f(a)-
an+3
2a
對一切n∈N*都成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年度北京五中第一學(xué)期高三數(shù)學(xué)期中考試 題型:044

設(shè)數(shù)列{an}的前n項和為Sn,對一切n∈N*,點都在函數(shù)的圖象上.

(1)求a1,a2,a3的值,并求通項an

(2)將數(shù)列{an}依次按1項、2項、3項、4項循環(huán)地分為(a1),(a2,a3),(a4,a5,a6),(a7,a8,a9,a10);(a11),(a12,a13),(a14,a15,a16),(a17,a18,a19,a20);(a21),…,分別計算各個括號內(nèi)各數(shù)之和,設(shè)由這些和按原來括號的前后順序構(gòu)成的數(shù)列為{bn},求b5+b100的值;

(3)設(shè)An為數(shù)列的前n項積,是否存在實數(shù)a,使得不等式對一切n∈N*都成立?若存在,求出a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年上海市虹口區(qū)北郊高級中學(xué)數(shù)學(xué)押題試卷(文理合卷)(解析版) 題型:解答題

設(shè)數(shù)列{an}的前n項和為Sn,對一切n∈N*,點(n,)都在函數(shù)f(x)=x+的圖象上.
(1)計算a1,a2,a3,并歸納出數(shù)列{an}的通項公式;
(2)將數(shù)列{an}依次按1項、2項、3項、4項循環(huán)地分為(a1),(a2,a3),(a4,a5,a6),(a7,a8,a9,a10);(a11),(a12,a13),(a14,a15,a16),(a17,a18,a19,a20);(a21)…,分別計算各個括號內(nèi)各數(shù)之和,設(shè)由這些和按原來括號的前后順序構(gòu)成的數(shù)列為{bn},求b5+b100的值;
(3)設(shè)An為數(shù)列的前n項積,若不等式An<f(a)-對一切n∈N*都成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案