函數(shù)f(x)對(duì)任意的a,b∈R,都有f(a+b)=f(a)+f(b)-1,并且當(dāng)x>0時(shí),f(x)>1.
(1)求證:f(x)是R上的增函數(shù);
(2)若f(4)=5,解不等式f(3m2-m-2)<3.
分析:(1)先任取x1<x2,x2-x1>0.由當(dāng)x>0時(shí),f(x)>1.得到f(x2-x1)>1,再對(duì)f(x2)按照f(a+b)=f(a)+f(b)-1變形得到結(jié)論.
(2)由f(4)=f(2)+f(2)-1求得f(2)=3,再將f(3m2-m-2)<3轉(zhuǎn)化為f(3m2-m-2)<f(2),由(1)中的結(jié)論,利用單調(diào)性求解.
解答:解:(1)證明:任取x1<x2,
∴x2-x1>0.
∴f(x2-x1)>1.
∴f(x2)=f[x1+(x2-x1)]
=f(x1)+f(x2-x1)-1>f(x1),
∴f(x)是R上的增函數(shù).
(2)∵f(4)=f(2)+f(2)-1=5,
∴f(2)=3.
∴f(3m2-m-2)<3=f(2).
又由(1)的結(jié)論知,f(x)是R上的增函數(shù),
∴3m2-m-2<2,
3m2-m-4<0,
∴-1<m<
4
3
點(diǎn)評(píng):本題主要考查抽象函數(shù)的單調(diào)性證明和利用單調(diào)性定義解抽象不等式,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)對(duì)任意的實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y)+2y(x+y)+1且f(1)=1.
(1)若x∈N*,試求f(x)的解析式;
(2)若x∈N*,且x≥2時(shí),不等式f(x)≥(a+7)x-(a+10)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)f(x)對(duì)任意的實(shí)數(shù)x,存在常數(shù)M,使得不等式|f(x)|≤M|x|恒成立,那么就稱函數(shù)f(x)為有界泛函,下面四個(gè)函數(shù):
①f(x)=1;②f(x)=x2;③f(x)=(sinx+cosx)x;④f(x)=
xx2+x+1

其中屬于有界泛函的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)f(x)對(duì)任意的實(shí)數(shù)x,存在常數(shù)M,使得不等式|f(x)|≤M|x|恒成立,那么就稱函數(shù)f(x)為有界泛函數(shù),下面四個(gè)函數(shù):①f(x)=1;②f(x)=x2;③f(x)=(sinx+cosx)x;④f(x)=
x
x2+x+1

其中屬于有界泛函數(shù)的是(  )
A、①②B、①③C、③④D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)對(duì)任意的正實(shí)數(shù)x1,x2(x1≠x2),恒有(x1-x2)(f(x1)-f(x2))>0,則一定正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)對(duì)任意的實(shí)數(shù)x1,x2∈D,均有|f(x2)-f(x1)|≤|x2-x1|,則稱函數(shù)f(x)是區(qū)間D上的“平緩函數(shù)”,
(1)判斷g(x)=sinx和h(x)=x2-x是不是實(shí)數(shù)集R上的“平緩函數(shù)”,并說明理由;
(2)若數(shù)列{xn}對(duì)所有的正整數(shù)n都有 |xn+1-xn|≤
1
(2n+1)2
,設(shè)yn=sinxn,求證:|yn+1-y1|<
1
4

查看答案和解析>>

同步練習(xí)冊(cè)答案