已知tanα=2,sinα+cosα<0,則
sin(2π-α)•sin(π+α)•cos(π+α)
sin(3π-α)•cos(π+α)
=
 
考點:同角三角函數(shù)基本關(guān)系的運用,運用誘導公式化簡求值
專題:三角函數(shù)的求值
分析:由tanα的值,根據(jù)sinα+cosα<0,利用同角三角函數(shù)間基本關(guān)系求出cosα與sinα的值,原式利用誘導公式化簡,約分后將sinα的值代入計算即可求出值.
解答: 解:∵tanα=2,sinα+cosα<0,
∴cosα=-
1
1+tan2α
=-
5
5
,sinα=-
1-cos2α
=-
2
5
5
,
則原式=
-sinα(-sinα)(-cosα)
sinα(-cosα)
=sinα=-
2
5
5
,
故答案為:-
2
5
5
點評:此題考查了同角三角函數(shù)基本關(guān)系的運用,以及運用誘導公式化簡求值,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知
1+sinθ+cosθ
1+sinθ-cosθ
=
1
2
,則tanθ=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

根據(jù)市場調(diào)查,某商品在最近40天內(nèi)的價格P與時間t的關(guān)系用圖(1)中的一條折線表示,銷售量Q與時間t的關(guān)系用圖(2)中的線段表示(t∈N*

(1)分別寫出圖(1)表示的價格與時間的函數(shù)關(guān)系式P=f(t),圖(2)表示的銷售量與時間的函數(shù)關(guān)系式Q=g(t).
(2)求這種商品的銷售額S(銷售額=銷售量×價格)的最大值及此時的時間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且Sn=
1
2
n•an+1,其中a1=1
(1)求數(shù)列{an}的通項公式;
(2)若bn=
an+1
an+2
+
an+2
an+1
,數(shù)列{bn}的前n項和為Tn,求證:Tn<2n+
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于兩個非零量
a
,
b
,求使|
a
+t
b
|最小時的t的值,并求此時
b
a
+t
b
的夾角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求證:
tan(2π-α)sin(-2π-α)cos(6π-α)
sin(α+
2
)cos(α+
2
)
=-tanα.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡:
cos25°-sin2
sin40°cos40°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡:
(1)sin(-α)cos(-α-π)tan(2π+α)
(2)
sin(180°+α)cos(-α)
tan(-α)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用二分法求出ln(2x+6)+2=3x 在區(qū)間(1,2)內(nèi)的近似解(精確到0.1).

查看答案和解析>>

同步練習冊答案