13.(1)計(jì)算:2log32-log3$\frac{32}{9}$+log38-25${\;}^{lo{g}_{5}3}$;
(2)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-(-7.8)0-(3$\frac{3}{8}$)${\;}^{\frac{2}{3}}$+($\frac{2}{3}$)-2

分析 (1)利用對數(shù)的運(yùn)算性質(zhì)即可得出.
(2)利用指數(shù)的運(yùn)算性質(zhì)即可得出.

解答 解:(1)原式=$lo{g}_{3}\frac{{2}^{2}×8}{\frac{32}{9}}$-${5}^{2lo{g}_{5}3}$
=2-32=-7.
(2)原式=$(\frac{3}{2})^{2×\frac{1}{2}}$-1-$(\frac{3}{2})^{3×\frac{2}{3}}$+$(\frac{3}{2})^{2}$
=$\frac{3}{2}$-1-$\frac{9}{4}$+$\frac{9}{4}$
=$\frac{1}{2}$.

點(diǎn)評 本題考查了對數(shù)與指數(shù)冪的運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知曲線C在y軸右邊,C上的每一點(diǎn)到點(diǎn)F(1,0)的距離比到y(tǒng)軸的距離多1.
(Ⅰ)求曲線C的方程;
(Ⅱ)已知過點(diǎn)M(m,0)(m>0)的直線l與曲線C有兩交點(diǎn)A,B,若$\overrightarrow{FA}•\overrightarrow{FB}$<0恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)h(x)=ax3-1(a∈R),g(x)=lnx.
(I)若f(x)=h(x)+3xg(x)圖象過點(diǎn)(1,-1)時,求f(x)的單調(diào)區(qū)間;
(II)函數(shù)F(x)=$({a-\frac{1}{3}}){x^3}$+$\frac{1}{2}{x^2}$g(a)-h(x)-1,當(dāng)a>${e^{\frac{10}{3}}}$(e為自然對數(shù)的底數(shù))時,函數(shù)F(x)過點(diǎn)A(1,m)的切線F(x)切于點(diǎn)B(x0,F(xiàn)(x0))
①試將m表示成x0的表達(dá)式.
②若切線至少有2條,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{ax+b,x<0}\\{{2}^{x},x≥0}\end{array}\right.$,且f(-2)=3,f(-1)=f(1).
( I)求f(x)的解析式;
( II)畫出f(x)的圖象(不寫過程)并求其值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.命題“若a>-3,則a>-6”以及它的逆命題、否命題、逆否命題中,假命題的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的離心率為2,坐標(biāo)原點(diǎn)到直線AB的距離為$\frac{3}{2}$,其中A(a,0),B(0,-b).
(1)求雙曲線的方程;
(2)若B1是雙曲線虛軸在y軸正半軸上的端點(diǎn),過B作直線與雙曲線交于M,N兩點(diǎn),求B1M⊥B1N時,直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)是一次函數(shù),g(x)是反比例函數(shù),且滿足f[f(x)]=x+2,g(1)=-1
(1)求函數(shù)f(x)和g(x);
(2)設(shè)h(x)=f(x)+g(x),判斷函數(shù)h(x)在(0,+∞)上的單調(diào)性,并用定義加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=-$\frac{1}{2}$x2+x在定義域內(nèi)存在區(qū)間[m,n]上的值域?yàn)閇3m,3n],則m+n的值是( 。
A.-2B.-3C.-4D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖所示是一個長方體截去一個角得到的幾何體的直觀圖及正視圖和側(cè)視圖(單位:cm).
(1)畫出該多面體的俯視圖,并標(biāo)上相應(yīng)的數(shù)據(jù);
(2)設(shè)M為AB上的一點(diǎn),N為BB’中點(diǎn),且AM=4,證明:平面GEF∥平面DMN.

查看答案和解析>>

同步練習(xí)冊答案