1.如圖所示是一個(gè)長(zhǎng)方體截去一個(gè)角得到的幾何體的直觀圖及正視圖和側(cè)視圖(單位:cm).
(1)畫出該多面體的俯視圖,并標(biāo)上相應(yīng)的數(shù)據(jù);
(2)設(shè)M為AB上的一點(diǎn),N為BB’中點(diǎn),且AM=4,證明:平面GEF∥平面DMN.

分析 (1)已知中正視圖,側(cè)視圖和直觀圖,可得該多面體的俯視圖;
(2)根據(jù)面面平行的第二判定定理,可證得平面GEF∥平面DMN.

解答 解:(1)該多面體的俯視圖如下圖所示:
.…(6分)

證明:(2)∵N為BB′中點(diǎn),且AM=4,

連接MN,MD,ND,
則四邊形MNFE為平行四邊形,
∴EF∥MN.…(9分)
又由GF∥DM.
∵EF,GF?平面EFG,EF∩GF=F,
MN,DM?平面DMN.MN∩DM=M
∴平面GEF∥平面DMN.…(12)

點(diǎn)評(píng) 題考查幾何體的三視圖,考查面面平行,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.(1)計(jì)算:2log32-log3$\frac{32}{9}$+log38-25${\;}^{lo{g}_{5}3}$;
(2)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-(-7.8)0-(3$\frac{3}{8}$)${\;}^{\frac{2}{3}}$+($\frac{2}{3}$)-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.某校高中一年級(jí)組織學(xué)生參加了環(huán)保知識(shí)競(jìng)賽,并抽取了其中20名學(xué)生的成績(jī)進(jìn)行分析.右圖是這20名學(xué)生競(jìng)賽成績(jī)(單位:分)的頻率分布直方圖,其分組為[100,110),[110,120),…,[130,140),[140,150].
(Ⅰ)求圖中a的值及成績(jī)分別落在[100,110)與[110,120)中的學(xué)生人數(shù);
(Ⅱ) 學(xué)校決定從成績(jī)?cè)赱110,120)的學(xué)生中任選2名進(jìn)行座談,求這2人的成績(jī)都在[110,120)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知函數(shù)f(x)的定義域?yàn)椋?,+∞),且滿足f(x)+x•f'(x)>0(f'(x)是f(x)的導(dǎo)函數(shù)),則不等式(x-1)f(x2-1)<f(x+1)的解集為( 。
A.(-1,2)B.(1,2)C.(1,+∞)D.(-∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.(1)如圖,△AOB為等腰直角三角形,OA=1,OC為斜邊AB的高,P為線段OC的中點(diǎn),求$\overrightarrow{AP}$•$\overrightarrow{OP}$的值;
(2)已知2sin2α=1+cos2α,求tan2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.(-$\frac{7}{8}$)0+[(-2)3]${\;}^{-\frac{2}{3}}$=$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=x+aeπ(a∈R).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)x<0,a≤1時(shí),證明:x2+(a+1)x>f'(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=$\sqrt{3-x}$+$\frac{1}{{\sqrt{x+2}}}$的定義域?yàn)榧螦,集合B={x|x<a}.
(I)求集合A
(II)若全集U={x|x≤4},a=-1,求∁UA和A∩(∁UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知在平面直角坐標(biāo)系中的一個(gè)橢圓,它的中心在原點(diǎn),左焦點(diǎn)為$F(-\sqrt{3},0)$,且過(guò)點(diǎn)D(2,0),求該橢圓的標(biāo)準(zhǔn)方程是.

查看答案和解析>>

同步練習(xí)冊(cè)答案