3.設(shè)全集U={x|x≥3,x∈N},集合A={x|x2≥10,x∈N},則∁UA={3}.

分析 求出A中不等式的解集,列舉出解集中的自然數(shù)解確定出A,求出A的補集即可.

解答 解:∵全集U={x|x≥3,x∈N},A={x|x2≥10,x∈N}={x|x≥$\sqrt{10}$,x∈N},
∴∁UA={x|3≤x≤$\sqrt{10}$,x∈N}={3},
故答案為:{3}

點評 此題考查了補集及其運算,熟練掌握補集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)向量$\vec a,\vec b$的夾角為θ,已知向量$\vec a=({x,\sqrt{3}}),\vec b=({x,-\sqrt{3}})$,若$({2\vec a+\vec b})⊥\vec b$,則θ=$\frac{2}{3}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某綜藝節(jié)目為增強娛樂性,要求現(xiàn)場嘉賓與其場外好友連線互動.凡是拒絕表演節(jié)目的好友均無連線好友的機會;凡是選擇表演節(jié)目的好友均需連線未參加過此活動的3個好友參與此活動,以此下去.
(Ⅰ)假設(shè)每個人選擇表演與否是等可能的,且互不影響,則某人選擇表演后,其連線的3個好友中不少于2個好友選擇表演節(jié)目的概率是多少?
(Ⅱ)為調(diào)查“選擇表演者”與其性別是否有關(guān),采取隨機抽樣得到如表:
 選擇表演拒絕表演合計
501060
101020
合計602080
①根據(jù)表中數(shù)據(jù),是否有99%的把握認為“表演節(jié)目”與好友的性別有關(guān)?
②將此樣本的頻率視為總體的概率,隨機調(diào)查3名男性好友,設(shè)X為3個人中選擇表演的人數(shù),求X的分布列和期望.
附:K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$;
P(K2≥k00.150.100.050.0250.010
k02.0722.7063.8415.0246.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在△ABC中,$B=\frac{π}{6}$,BC邊上的高等于$\frac{{\sqrt{3}}}{9}BC$,則cosA=( 。
A.$\frac{{5\sqrt{13}}}{26}$B.$-\frac{{5\sqrt{13}}}{26}$C.$-\frac{{3\sqrt{39}}}{26}$D.$\frac{{3\sqrt{39}}}{26}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在△ABC中,角A,B,C所對的邊分別是a,b,c,若a2+b2=2c2,則角C的取值范圍是(  )
A.$({0,\frac{π}{3}}]$B.$({0,\frac{π}{3}})$C.$({0,\frac{π}{6}}]$D.$({0,\frac{π}{6}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若點(x,y)位于曲線y=|2x-1|與y=3所圍成的封閉區(qū)域內(nèi)(包含邊界),則2x-y的最小值為-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在△ABC中,已知cosC+(cosA-$\sqrt{3}$sinA)cosB=0.
(1)求角B的大;
(2)若sin(A-$\frac{π}{3}$)=$\frac{3}{5}$,求sin2C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在△ABC中,角A,B,C對應(yīng)邊分別為a,b,c,已知三個向量$\overrightarrow m=(a,cos\frac{A}{2})$,$\overrightarrow n=(b,cos\frac{B}{2})$,$\overrightarrow p=(c,cos\frac{C}{2})$共線,則△ABC形狀為( 。
A.等邊三角形B.等腰三角形C.直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.中國傳統(tǒng)文化中很多內(nèi)容體現(xiàn)了數(shù)學(xué)的對稱美,如圖所示的太極圖是由黑白兩個魚形紋組成的圓形圖案,充分展現(xiàn)了相互轉(zhuǎn)化、對稱統(tǒng)一的形式美、和諧美,給出定義:能夠?qū)AO的周長和面積同時平分的函數(shù)稱為這個圓的“優(yōu)美函數(shù)”,給出下列命題:
①對于任意一個圓O,其“優(yōu)美函數(shù)“有無數(shù)個”;
②函數(shù)$f(x)=ln({{x^2}+\sqrt{{x^2}+1}})$可以是某個圓的“優(yōu)美函數(shù)”;
③正弦函數(shù)y=sinx可以同時是無數(shù)個圓的“優(yōu)美函數(shù)”;
④函數(shù)y=f(x)是“優(yōu)美函數(shù)”的充要條件為函數(shù)y=f(x)的圖象是中心對稱圖形.
其中正確的命題是( 。
A.①③B.①③④C.②③D.①④

查看答案和解析>>

同步練習(xí)冊答案