【題目】已知等差數(shù)列的前項(xiàng)和為,等比數(shù)列的前項(xiàng)和為,,,.

(1),求的通項(xiàng)公式;

(2),.

【答案】(1);(2)21或.

【解析】試題分析:(1)設(shè)等差數(shù)列公差為,等比數(shù)列公比為,由已知條件求出,再寫出通項(xiàng)公式;(2)由,求出的值,再求出的值,求出。

試題解析:設(shè)等差數(shù)列公差為,等比數(shù)列公比為,即.

(1)∵,結(jié)合,

.

(2)∵,解得或3,

當(dāng)時(shí),,此時(shí);

當(dāng)時(shí),,此時(shí).

型】解答
結(jié)束】
20

【題目】如圖,已知直線與拋物線相交于兩點(diǎn),, ,且點(diǎn)的坐標(biāo)為.

1的值;

2為拋物線的焦點(diǎn), 為拋物線上任一點(diǎn)的最小值.

【答案】1.24.

【解析】試題分析:1)設(shè)Ax1,y1),Bx2,y2),由ABODkOD=,可得直線AB的斜率k=-得到直線AB的方程為,與拋物線方程聯(lián)立化為,由,即,∴,即可解得的值;

2過點(diǎn)M作直線的垂線MN,垂足為N,則|MF|=|MN|,由拋物線定義知的最小值為點(diǎn)到拋物線準(zhǔn)線的距離.

試題解析:

1)設(shè) ,

,直線的方程為,

.將代入上式,

整理得,,

,,,.

2)過點(diǎn)M作直線的垂線MN,垂足為N,則|MF|=|MN|,由拋物線定義知的最小值為點(diǎn)到拋物線準(zhǔn)線的距離,又準(zhǔn)線方程為,因此的最小值為DN=4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f′(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(﹣1)=0,當(dāng)x>0時(shí),xf′(x)﹣f(x)<0,則使得f(x)>0成立的x的取值范圍是(
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(﹣1,0)
D.(0,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱臺(tái), 平面, , , 分別為的中點(diǎn).

1求證: 平面

2求平面與平面所成角(銳角)的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某圓圓心在x軸上,半徑長為5,且截y軸所得線段長為8,求該圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列 中,公差 , ,且 成等比數(shù)列.
(1)求數(shù)列 的通項(xiàng)公式;
(2)若 為數(shù)列 的前 項(xiàng)和,且存在 ,使得 成立,求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小張經(jīng)營某一消費(fèi)品專賣店,已知該消費(fèi)品的進(jìn)價(jià)為每件40元,該店每月銷售量(百件)與銷售單價(jià)x(元/件)之間的關(guān)系用下圖的一折線表示,職工每人每月工資為1000元,該店還應(yīng)交付的其它費(fèi)用為每月10000元.

(1)把y表示為x的函數(shù);

(2)當(dāng)銷售價(jià)為每件50元時(shí),該店正好收支平衡(即利潤為零),求該店的職工人數(shù);

(3)若該店只有20名職工,問銷售單價(jià)定為多少元時(shí),該專賣店可獲得最大月利潤?(注:利潤=收入-支出)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左、右焦點(diǎn)分別為 ,上、下頂點(diǎn)分別是 ,點(diǎn) 的中點(diǎn),若 ,且 .
(1)求橢圓 的標(biāo)準(zhǔn)方程;
(2)過 的直線 與橢圓 交于不同的兩點(diǎn) ,求 的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x+ +lnx,a∈R. (Ⅰ)若f(x)在x=1處取得極值,求a的值;
(Ⅱ)若f(x)在區(qū)間(1,2)上單調(diào)遞增,求a的取值范圍;
(Ⅲ)討論函數(shù)g(x)=f'(x)﹣x的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面ABEF⊥平面ABC,四邊形ABEF為矩形,AC=BC.O為AB的中點(diǎn),OF⊥EC. (Ⅰ)求證:OE⊥FC:
(Ⅱ)若 = 時(shí),求二面角F﹣CE﹣B的余弦值.

查看答案和解析>>

同步練習(xí)冊答案