若點(3,2)是橢圓=1(a>b>0)上的一點,則下列說法錯誤的是

[  ]

A.點(-3,2)在該橢圓上

B.點(3,-2)在該橢圓上

C.點(-3,-2)在該橢圓上

D.點(-3,-2)不在該橢圓上

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列四個命題:
①若0>a>b,則
1
a
1
b

②x>0,x+
1
x-1
的最小值為3;
③橢圓
x2
4
+
y2
3
=1
比橢圓
x2
4
+
y2
2
=1
更接近于圓;
④設(shè)A,B為平面內(nèi)兩個定點,若有|PA|+|PB|=2,則動點P的軌跡是橢圓;
其中真命題的序號為
①②③
①②③
.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•淄博一模)已知橢圓C:
x2
a2
+
y2
3
=1(a>
10
)
的右焦點F在圓D:(x-2)2+y2=1上,直線l:x=my+3(m≠0)交橢圓于M、N兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若
OM
ON
(O為坐標(biāo)原點),求m的值;
(Ⅲ)若點P的坐標(biāo)是(4,0),試問△PMN的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•寶雞模擬)平面內(nèi)點P與兩定點A1(-a,0),A2(a,0)(其中a>0)連線的斜率之積為非零常數(shù)m,已知點P的軌跡是橢圓C,離心率是
2
2

(1)求m的值;
(2)設(shè)橢圓的焦點在x軸上,若過點(2,3)且斜率為-1的直線被橢圓C所截線段的長度為
20
3
3
,求此橢圓的焦點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,橢圓C1與橢圓C2中心在原點,焦點均在x軸上,且離心率相同.橢圓C1的長軸長為2
2
,且橢圓C1的左準(zhǔn)線l:x=-2被橢圓C2截得的線段ST長為2
3
,已知點P是橢圓C2上的一個動點.
(1)求橢圓C1與橢圓C2的方程;
(2)設(shè)點A1為橢圓C1的左頂點,點B1為橢圓C1的下頂點,若直線OP剛好平分A1B1,求點P的坐標(biāo);
(3)若點M,N在橢圓C1上,點P,M,N滿足
OP
=
OM
+2
ON
,則直線OM與直線ON的斜率之積是否為定值?若是,求出該定值;若不是,說明理由.

查看答案和解析>>

同步練習(xí)冊答案